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We have studied the effects of spontaneous emission �SE� on a single-state time domain atom interferometer
�AI� that uses trapped Rb atoms. The AI uses two standing wave pulses separated by time T to produce an echo
signal at time 2T due to interference between momentum states. We find that SE influences both the shape of
the echo signal and its periodic time-dependent amplitude in a manner consistent with theoretical predictions.
The results show that the time-dependent signal from the AI is related to the effective radiative decay rate of
the excited state. We also present results that test theoretical predictions for several properties of the echo
formation such as the variation in momentum transfer due to the change in the angle between the traveling
wave components of the excitation pulses, strength of the atom-field interaction, and the effect of spatial profile
of the excitation beams. These studies are important for realizing precision measurements of the atomic fine
structure constant and gravity using this interferometer.
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I. INTRODUCTION

Recent experiments using atom interferometers �AIs�
have led to remarkable improvements in precision measure-
ments �1�. Among the best known experiments in this cat-
egory are atom interferometric measurements of the atomic
fine structure constant �2,3�, gravitational acceleration �4�,
rotation �5�, and gravity gradients �6�. Experiments in the
area of light-matter interactions have also provided interest-
ing tests of quantum mechanics. These include numerous
experiments with Bose-Einstein condensates �BEC� such as
superradiance �7�, efficient output coupling of BEC �8�, and
measurements of the effect of the index of refraction on the
wave vector �9�. The work presented in �2–6� has relied on
Raman interferometers that involve transitions between hy-
perfine ground states of trapped atoms whereas the experi-
ments in �8,9� have used an AI that manipulates atoms in a
single atomic ground state. A single-state AI was demon-
strated in Ref. �10�. Subsequently, we have developed single-
state AIs that work in both the time domain �11,12� and the
frequency domain �13� for obtaining precise measurements
of atomic recoil �related to the atomic fine structure constant
�� and gravitational acceleration, g. An important challenge
for the time domain measurements in Refs. �11,12� is to un-
derstand the effects of spontaneous emission �SE� on the
signal shape. These effects can contribute to systematic shifts
on the precision measurement.

The excitation scheme for the AI is shown in Fig. 1. It
involves an off-resonant standing wave pulse applied at t
=0 to diffract an atom into a superposition of momentum

states separated by integer multiples of 2�q, as shown in Fig.
2. Here, ��h /2�, where h is Planck’s constant and q�k1
−k2 is the difference in wave vectors between the traveling
wave components �generally counterpropagating� of the
standing wave excitation pulses. A second off-resonant
standing wave pulse at t=T results in momentum state inter-
ference and produces echoes in the vicinity of t=2T ,3T , . . ..
Figure 2 shows a subset of momentum states that interfere at
t=2T. The echo at t=2T is associated with a density modu-
lation with a period � /2 �where � is the wavelength of the
traveling wave components of the excitation pulses� in the
atomic sample just before and after t=2T. A readout pulse is
applied in the vicinity of t=2T and the echo is detected by
coherent backscattering from the density grating. This signal
represents an average over the velocity distribution of the
sample of trapped atoms. The echo envelope has a character-
istic dispersion shape as shown in Fig. 2. The signal enve-
lope shows that a density grating is present just before and
after t=2T. The signal zero at t=2T represents the recreation
of the uniform density distribution that was present at t=0.
The echo amplitude measured as a function of T exhibits a
period Trecoil=� /�q, where �q=�q2 /2M is the atomic recoil
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FIG. 1. Timing diagram for the single-state AI used in this work.
Pulse durations of the first and second standing wave pulses are
typically in the range 500–800 ns and 30–200 ns, respectively.
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FIG. 2. Billiard ball representation of the momentum states as-
sociated with the interferometer. Only three possible trajectories
�0, ±�q� due to the first excitation pulse are shown. A subset of
higher-order processes �±2�q, ±3�q, etc.� can be rephased at
t=2T, but only trajectories differing by �q contribute to the signal
at t=2T. The echo envelope is also shown in the vicinity of t=2T
and its temporal width is inversely proportional to the velocity
distribution. Here, the time interval between extrema is �2 �s,
T�1–30 ms, and Trecoil=� /�q�32 �s.
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frequency, and M is the atomic mass. The recoil period can
be understood physically as the time taken for a wave packet
traveling with recoil velocity �q /M to move through one
period �� /2� of the density grating. A precision measurement
of � /M can be obtained by measuring the periodic echo
amplitude as a function of the excitation pulse separation T
and extracting the temporal separation between widely sepa-
rated minima �10,11�. An advantage of the technique used in
this work is that the periodic signal can be detected with
100% contrast. Although the time scale and precision asso-
ciated with the experiment should be limited only by the
transit time of the atoms through the region of interaction, in
practice it is necessary to eliminate the effects of decoher-
ence due to atomic collisions and background light. Mag-
netic field gradients also cause amplitude oscillations that
must be eliminated �12�. An interesting aspect of this experi-
ment is that the Doppler phases accumulated by the momen-
tum states are canceled at the echo times. As a result the
experiment does not rely on velocity selection. The primary
benefit of cooling the sample is to extend the transit time.

Spontaneous emission during the excitation pulses results
in a change in the shape of the echo envelope and induces an
asymmetry in the periodic T-dependent echo amplitude. The
change in the echo amplitude versus T is also associated with
a temporal offset �10�. Understanding the impact of SE plays
a crucial role in fitting the T-dependent signal and extracting
�q. In this work, we present a calculation of the echo signal
including the effect of SE and show that this theoretical
model is effective in describing the echo envelope and
T-dependent signal shape. A measurement of the effective
radiative rate of the sample can be extracted from fits to the
data. The effective rate shows the predicted dependence on
the detuning of the standing wave pulses. The measured ra-
diative rate exhibits a characteristic dependence on the dura-
tion of the second standing wave pulse. This rate asymptoti-
cally approaches the radiative rate for an isolated atom for
sufficiently long interaction pulses. Using a numerical simu-
lation involving the dressed state basis, we show that this
effect is related to atomic motion in the periodic optical po-
tential as well as in the spatial profile of the excitation
beams. We also present studies of the T-dependent echo am-
plitude as a function of the strength of the atom-field cou-
pling �pulse area�, spatial profile of excitation beams, and
momentum imparted to the atoms and compare with
predictions.

The rest of the paper is organized as follows. In Sec. II we
describe a calculation of the echo signal including the effect
of SE during the pulses. Some of the details pertaining to
manipulation of Bessel functions used in the calculation are
presented in the Appendix. The experimental details are pre-
sented in Sec. III and a discussion of the data is given in Sec.
IV. Finally, we compare the data with numerical simulations
based on dressed states to understand the effective radiative
rate of the system.

II. THEORY

We first describe the calculation used to model the echo
signal presented in Refs. �10,14–16� and then consider the
effects of SE and spatial profile.

The system is modeled semiclassically as a collection of
two-level atoms. For off-resonant excitation pulses shown in
Fig. 3 the excited state can be adiabatically eliminated. Dur-
ing the first standing wave excitation pulse which is applied
at t=0 the Hamiltonian of the atom-field system is given by

H =
p̂2

2M
− ���� + i�� V�r�

V�r� 0
� . �1�

Here p is the momentum associated with the atom, ���L
−�res is the detuning of the laser from the excited state, � is
the effective radiative decay rate of the excited state, and
V�r� is the spatially periodic atom-field coupling. Because
the laser field creates a standing wave, V�r� is given by

V�r� =
�E0

2
cos	q · r

2

 , �2�

where E0 is the amplitude of the electric field, � is the dipole
moment, and r is the position of the atom in the potential. If
the pulses are sufficiently short, the distance the atoms move
during the pulse is small compared to the period of the stand-
ing wave potential � /2. It is then possible to ignore the ki-
netic energy term p̂2

2M in the Hamiltonian �Raman-Nath ap-
proximation� during the excitation pulse. Using this
approximation, the expression for the interaction potential
energy for the ground state becomes

U�x� =
V2�x�

��� + i��
�

��1
2

8�� + i��
cos�qx� , �3�

where x is the position of the atom along the direction of q,
�1=

�E0

� is the Rabi frequency, and a constant term has been
ignored.

For an initial atomic plane wave, the wave function is
�	�t=0�

eik0x, where k0 is the initial momentum. Applying
the time evolution operator we obtain

�	�t�
 = exp�−
i

�
�

0

t

H̃�t��dt���	�0�
 �4�

at any time, t, during the excitation pulses. Here H̃ is the
effective Hamiltonian. For an excitation pulse of duration t
=�1 we find
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FIG. 3. The AI involves off-resonant standing wave excitation
and manipulation of atoms in the ground state. Here, �res is the
atomic resonance frequency and �L is the laser frequency.
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�	��1�
 = exp�i�1 cos�qx� + ik0x� �5�

where �1�−
�1

2

8��+i���1 is the area of the first standing wave

pulse. For the far-detuned case, �
�, we can ignore the

effect of � in Eq. �3� so that �1=−
�1

2

8��1.
Next, the Jacobi-Anger expansion can be used to rewrite

�	��1�
 after the standing wave interaction so that

	��1� = �
n=−�

�

inJn��1�ei�nq+k0�x, �6�

where Jn�x� is the nth order Bessel function of the first kind.
Each Fourier component of index n in the summation repre-
sents a process transferring n�q momentum to the atom.
Each two-photon process involves absorption of a photon
from one traveling wave component of the standing wave
pulse and stimulated emission in the direction of the other
traveling wave. Therefore, the Fourier series represents a su-
perposition of plane waves separated in momentum by �q
with amplitudes weighted by Bessel functions. Equation �6�
can be expanded to give

�	��1�
 = J0��1��p0
 + iJ1��1��p0 + �q
 + iJ1��1��p0 − �q


− J2��1��p0 + 2�q
 − J2��1��p0 − 2�q
 + ¯ , �7�

where �p0
�eik0x and �p0+n�q
�ei�k0+nq�x.
After the standing wave pulse is turned off, the state will

undergo free space evolution according to

H =
p2

2M
=

�2�nq + k0�2

2M
. �8�

The atomic density distribution after the first pulse can then
be calculated as

	*	 = �
n,n�

i�n−n��Jn��1�Jn���1�

� ei��n−n��qx−�n2−n�2��qt�e−2i�n−n����0��qt. �9�

To detect the density modulation present in the ground
state after the first standing wave pulse, a traveling wave
readout pulse must be applied. The readout pulse is at the
same frequency as the excitation pulse and is applied along
k2. Light is backscattered off the atomic density grating
along k1. This detection scheme ensures that only momen-
tum states differing by q=2k will contribute to the signal.
The signal is proportional to the amplitude of the spatial
harmonic with period � /2. In our case, the spatial harmonics
are restricted to n−n��−�= ±1. Thus, with a change of
summation indices, we can simplify Eq. �9� to obtain

	*	 = �
�=±1

i−��
n

Jn��1�Jn+���1�

� ei�−�qx+��2n+���qt�e2i���0��qt. �10�

It is possible to compress the sum over n in Eq. �10� by using
a Bessel function identity given in Ref. �17�.

i�J�„2u� sin��/2�… = �
l=−�

�

ei��/2Jl+��u��Jl�u��eil� �11�

so that

	*	 = 2J1„2�1 sin��qt�…cos�qx − 2��0��qt� . �12�

this is the signal that is relevant to Kapitza-Dirac scattering
for neutral atoms which was demonstrated in Ref. �18�. The
term containing �0� in the above equation is due to the initial
velocity of the atoms. The recoil period can be extracted by
measuring the amplitude of the density grating as a function
of t. However, Eq. �12� must be integrated over the velocity
distribution. The distribution would cause the atoms to
dephase on a time scale much smaller than �q

−1 unless the
sample temperature is ultracold as in a Bose-Einstein con-
densate �BEC� �19�. However, if a second pulse is applied at
t=T the effect of Doppler dephasing can be canceled and an
echo signal can be observed at t=2T. Even if the sample is
not ultracold, it is possible to observe the effects of recoil by
measuring the echo amplitude as a function of T. We note
that for our experimental conditions, the most probable speed
associated with the atom cloud vT�20vr where vr=�q /M is
the recoil velocity.

After the first standing wave pulse, the system undergoes
free space evolution according to Eq. �8�. The second stand-
ing wave excitation pulse �pulse area �2� affects the atomic
plane waves in the same way as the first excitation pulse
affects the initial plane wave so that

	�t = T� = �
n,m

i�n+m�Jn��1�Jm��2�

� ei��m+n�qx−n2�qT−nqv0T�ei�k0x−�0�T�, �13�

where v0=�k0 /M is the initial velocity of the atomic plane
wave.

At a time t after the second standing wave pulse, the wave
function evolves as

	�t� = 	�T�e−i��0�+�m+n�qv0+�n + m�2�q�t. �14�

Using Eq. �14� to find 	*	 it can be shown that

	*	 = �
n,m,n�,m�

Jn��1�Jn���1�Jm��2�Jm���2�

� i�n+m−n�−m��ei�m+n−n�−m��qx

� e−iqv0��n+m−n�−m��t+�n−n��T�

� e−i�n2−n�2��qTe−i��n + m�2−�n� + m��2��qt. �15�

The echo technique ensures that only terms independent of
the initial velocity contribute to the signal. In addition, only
momentum states differing by �q will interfere and result in
backscattering from the readout pulse. Using these condi-
tions, it can be shown that

	*	�t = 2T� = 2�− 1�N cos�q�x − v0�t��

�JN„2�1 sin��q�t�…

�JN+1„2�2 sin��q�NT + �t��… , �16�
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where �t= t−2T and N=1 for the echo at t=2T. Assuming
that the time between standing wave pulses is much greater
than the dephasing time of the echo �qvTT
1�, we can av-
erage over the Maxwell-Boltzmann velocity distribution of
the sample to obtain

	*	 
 exp�− 	qvT�t

2

2�J1„2�1 sin��q�t�…

� J2„2�2 sin��q�T + �t��… . �17�

This expression is periodic in �t and T with a frequency �q.
The factor containing the first-order Bessel function in Eq.
�17� shows that �q can be determined by keeping the time
between pulses, T, fixed and observing the periodic signal as
a function of �t within the echo envelope if the sample is
sufficiently cold. The duration of the echo envelope in the
vicinity of t=2T is inversely proportional to the most prob-
able speed of velocity distribution along the direction of the
excitation pulses, as shown in Fig. 2. There will only be an
echo signal over an interval �t in which the atoms move a
distance of the order of the grating spacing ��t� �qvT�−1�.
For the case where �t�2T, Eq. �17� can be written in a
simpler form by assuming that the interaction pulse areas are
small ��1��2�1� �10� so that

	*	 � ��q�t�exp�− 	qvT�t

2

2�J2„2�2 sin��qT�… .

�18�

For a laser cooled sample with a temperature of �50 �K,
�q can be measured precisely by measuring the echo ampli-
tude as a function of the time between excitation pulses, T.
The detection techniques used in the measurements are either
sensitive to the electric field amplitude of the backscattered
light or the associated intensity. For the case of electric field
detection, the echo envelope is shown in Fig. 2. For both
electric field detection and intensity detection, the echo en-
velope is recorded with a detection system with a suitably
high bandwidth.

To obtain the echo amplitude we integrate the square of
the echo envelope over �t for a fixed value of T. The echo
envelope is integrated over the duration of the signal �several
�s�. For electric field detection, we take the positive square
root of the integrated signal to obtain the echo amplitude. For

intensity detection, the integrated signal represents the echo
amplitude. To study the T-dependent behavior of the signal,
we fit the echo amplitude to 	*	 for electric field detection
and �	*	�2 for intensity detection. We therefore use the term
echo amplitude throughout the paper to describe the strength
of the T-dependent signal obtained from either of these tech-
niques.

We now describe several aspects of the signal shape fol-
lowing a more detailed derivation that includes the effects of
SE and spatial profile of the excitation beams.

A. Spontaneous emission

The derivation presented here is based on Refs.
�14,15,20�. Equation �18� neglects several factors that affect
the signal shape such as SE and it is inadequate for fitting the
echo amplitude to obtain a precision measurement of �q.
Equation �18� was derived as the expression for the echo
signal for the case �
�. Therefore the effect of spontaneous
emission is ignored in Eq. �3�. In general, the potential en-
ergy is complex and the pulse area is given by

�1 =
− �1

2�

8�� + i��
= u���ei� �19�

where

u��� =
− �1

2�

8��2 + �2
�20�

and

� = tan−1	−
�

�

 . �21�

The definition of �1 in Eq. �19� is consistent with the defi-
nition of �1 following Eq. �5�. We note that � has a similar
form to the phase shift in the emitted radiation due to the
damping force for the case of a driven-damped harmonic
oscillator. The effect of � is to cause a delay in the formation
of the grating. As shown in this treatment, � influences the
shape of the echo envelope and the T-dependent echo ampli-
tude. Using Eqs. �19�–�21� we can modify the expression for
atomic density 	*	 following the same steps outlined in the
preceding section based on Refs. �14,15,20�. Defining �=n
+m−n�−m� we obtain

	*	 = �
m,n,�

i�Jn„u��1�ei�
…Jn+�N„u��1�e−i�

…Jm„u��2�ei�
…Jm−��N+1�„u��2�e−i�

…ei�qxei�N�2n+�N��qTe−i�qv0�te−i��2�n+m�−���qT. �22�

Here, �2 represents the duration of the second standing wave pulse. In order to simplify Eq. �22� we need an identity similar
to Eq. �11� that allows complex arguments. The Appendix describes the steps required to derive this identity which is contained
in Eq. �A13�. Using Eq. �A13�, we obtain an expression for the atomic density in the vicinity of t=2T which is given by

	*	 = �
�=−�

�

ei�qxe−i�qv0�t	 sin���q�t + ��
sin���q�t − ��


�N/2	 sin���q�NT + �t� + ��
sin���q�NT + �t� − ��


−��N+1�/2

�J�N„2u��1��sin���q�t − ��sin���q�t + ��…J−��N+1�„2u��2��sin���q�NT + �t� − ��sin���q�NT + �t� + ��… . �23�

Because our detection scheme is only sensitive to interference by momentum states that differ by �q ��= ±1� and we observe
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the � /2 spatial harmonic at t=2T �N=1�, the infinite sum is truncated and Eq. �23� can be written as

	*	 = cos�q�x − v0�t��	 sin��q�t + ��
sin��q�t − ��


1/2	 sin��q�T + �t� − ��
sin��q�T + �t� + ��


�J1„2u��1��sin��q�t + ��sin��q�t − ��…J2„2u��2��sin��q�T + �t� + ��sin��q�T + �t� − ��… . �24�

Integrating this expression over the Maxwell-Boltzmann distribution to account for all velocity classes it can be shown that

	*	total 
 exp�− 	qvT�t

2

2�	 sin��q�t + ��

sin��q�t − ��

1/2	 sin��q�T + �t� − ��

sin��q�T + �t� + ��

�J1„2u��1��sin��q�t + ��sin��q�t − ��…J2„2u��2��sin��q�T + �t� + ��sin��q�T + �t� − ��… . �25�

This expression is equivalent to Eq. �17� for the case where
�→0. We will now discuss some qualitative differences be-
tween the predictions of Eqs. �17� and �25�. We will separate
the discussions into a description of the echo envelope and a
description of the T-dependent signal that has a period Trecoil.
Equation �18� predicts a symmetric echo envelope if �t
�Trecoil and �1��2�1. For large interaction pulse areas or
ultracold samples Eq. �17� rather than Eq. �18� is valid and
predicts an asymmetric echo envelope. The solid curve in
Fig. 4 shows the symmetric echo envelope predicted by Eq.
�17� if �
�1. When the first standing wave pulse area in-
creases, the echo envelope remains symmetric but becomes
narrower. This is presumably due to the broadening of the
velocity distribution of the atoms caused by the standing
wave interaction. As the second pulse area increases, the
relative amplitude of the first lobe of the echo envelope be-
comes larger and the amplitudes of the two lobes show a
cyclical dependence on pulse area. A representation of an
asymmetric shape due to a change in pulse area is shown in

Fig. 4 as a dotted line. Equation �17� also shows that the
relative amplitudes of the lobes will change in a more com-
plicated cyclical manner if the time between pulses, T, is
varied. With pulse area and pulse separation fixed, Eq. �25�
predicts that the echo envelope will have an asymmetric
shape due to SE, as shown by the dashed line in Fig. 4. Other
factors affecting the echo envelope include effects such as
gravity that affect both arms of the interferometer are dis-
cussed in Ref. �12�. SE also has the effect of delaying the
time at which the signal zero occurs in the vicinity of t=2T.

A comparison of the echo amplitude predicted by Eqs.
�18� and �25� is shown in Fig. 5. In the presence of SE the
signal amplitude is predicted to have a pronounced asymme-
try with respect to the zeros of the function. The zeros sepa-
rated by Trecoil are shown in Fig. 5. This can attributed to the
nonsinusoidal nature of the interaction potential described by
Eq. �3�. To extract a precision measurement of �q it is crucial
to fit the data using an expression that accounts for these
asymmetric features �which are modeled by Eq. �25��. This
equation also predicts a negative temporal offset in the echo
amplitude due to SE. The temporal offset can be �1 �s for
typical experimental conditions. Therefore, the delay in the

E
c
h
o
E
n
v
e
l
o
p
e

FIG. 4. Echo envelope: Solid curve shows echo envelope pre-
dicted by Eq. �17� for T=1 ms, �1=2.5, and �2=2.6. The dotted
line shows an asymmetric shape due to the variation in pulse area
for T=1 ms, �1=2.5, and �2=5. The dashed line shows an asym-
metric shape due to SE modeled by Eq. �25� for T=1 ms, u1=2.5,
u2=2.6, and �=−0.02. The dashed line also shows a delay in the
position of the signal zero in the vicinity of �t=0. All curves are
calculated using a temperature of 100 �K and assuming that the
atomic species is 85Rb.

T
recoil

FIG. 5. Echo amplitude vs T with and without spontaneous
emission: Solid line shows echo amplitude vs T based on Eq. �18�
where �q=97 000 s−1, and �2=6. The dashed line shows the echo
amplitude vs T for Eq. �25� where �q=97 000 s−1, u2=6, and �=
−0.03. The dashed line shows an asymmetry in the periodic signal
in the presence of SE, as well as a temporal shift.
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formation of the grating due to SE effectively decreases the
values of T at which the zeros occur. Although this effect
does not change the period of the signal, �q is typically
measured by fitting to two widely separated periods �11�. If
the expanding atomic cloud samples different parts of the
standing wave potential or if � varies �due to the Doppler
shifts associated with the falling atomic cloud� when T is
varied, � will vary for the widely separate periods resulting
in a systematic effect on the measurement of �q. Both the
asymmetry and the temporal offset are shown in Fig. 5.

B. Spatial profile

The expression given in Eq. �25� has to be further modi-
fied to account for the spatial profile of the interferometry
beams. The derivation leading to Eq. �25� assumed that the
electric field was a plane wave with uniform amplitude. Due
to the Gaussian profile of the AI beams, atoms experience a
spatially varying Rabi frequency and, consequently, sample
different pulse areas. Equation �25� predicts that increasing
the pulse area results in multiple minima per recoil period
and the echo amplitude varies more rapidly in the vicinity of
the zero. This can be attributed to the interference of higher-
order momentum states produced by the first standing wave
pulse. However, the signal shape between adjacent zeros is
observed to be smoothed out. This effect is attributed to the
spatial profile.

The signal shape can be modeled by integrating the
Bessel functions in Eq. �25� over a range of Rabi frequen-
cies. This integral results in a generalized hypergeometric
function. Although this model resulted in signal shapes that
are qualitatively in agreement with the observed signal, we
find that the hypergeometric function is not suitable as a fit
function. However, the signal shape could be fit more accu-
rately using the function

S�T� = AJ2�b�1 − ed�sin��qT−��sin��qT+����� sin��qT − ��
sin��qT + ��

� ,

�26�

where A is an overall scale factor and the parameters b and d
are related to the pulse area.

Simulations of the signal shape using Eq. �26� show that
additional zero crossings are averaged out to give a periodic
signal that has only one local minimum per recoil period as
shown in Fig. 6. This figure shows that the solid line based
on Eq. �26� represents the effect of averaging the echo am-
plitude over a range of pulse areas.

III. EXPERIMENT

The light used for trapping and interferometry is derived
from a single Ti:Sapphire ring laser with an output power of
�1 W. The repump laser is derived from a grating stabilized
diode laser. A small portion of the Ti:Sapphire laser light is
sent through a saturation absorption spectrometer that in-
cludes a dual pass acousto-optic modulator �AOM� operating
at �70 MHz and serving as a tuning element. The laser is
locked to the 5S1/2 F=3 to 5P3/2 F=4 trapping transition in
85Rb so that the laser beam used in the experiment is

�140 MHz above resonance. A dual-pass AOM �AOM1� is
used to frequency shift and amplitude modulate the trapping
laser beams. The undiffracted laser beam from AOM1 is sent
into another dual-pass AOM �AOM2� operating at �80 MHz
to derive a laser beam at �300 MHz above resonance. This
beam is split and sent through two AOMS �AOM3 and
AOM4� operating at �250 MHz to derive excitation pulses
used for atom interferometry that are 50–100 MHz above
resonance. We load approximately 108 atoms in a magneto-
optical trap �MOT� on a time scale of �100 ms using AOM1
to tune the trapping beams to �2�N below resonance, where
�N= �2���−1=6.07 MHz is the natural linewidth, and the ra-
diative decay time, �=26.20 ns �21,22�. After turning off the
gradient coils in �500 �s, AOM1 is used to shift the trap-
ping beams to �5�N below resonance and cool the atoms in
a molasses for �5 ms. The trapping beams are then turned
off for �25 ms during which time AOM2, AOM3, and
AOM4 are turned on to generate traveling wave components
of the standing wave pulses as well as the traveling wave
readout pulse. The excitation pulses have approximately the
same diameter as the initial size of the cloud ��4 mm�. The
temperature of the sample is inferred by photographing the
ballistic expansion of the cloud using a charge-coupled de-
vice �CCD� camera and is typically �50 �K �23�. The echo
signal is detected by backscattering the readout pulse from
the sample. In this work, we have used two separate tech-
niques represented in Fig. 7 to detect the echo. Heterodyne
detection shown in Fig. 7�a� requires an optical local oscil-
lator �LO� which is derived by using the undiffracted beam
from AOM3. The LO is spatially separated from the dif-
fracted beam by �2.5 cm to minimize decoherence due to
scattered light. Pulsing AOM2 ensures that the LO is turned
on only for the duration of the excitation and readout pulses,
thereby minimizing decoherence due to background light.
Pulsing this AOM also ensures that standing wave pulses
have an on and/or off contrast of greater than 106:1. The
backscattered signal is combined with the LO on a balanced
heterodyne detector that detects the presence of the echo in

T
recoil

FIG. 6. Echo amplitude vs T showing the effect of spatial pro-
file: The dotted and dashed lines show the echo amplitude vs T
given by Eq. �25� with u2=6 and u2=2.85, respectively. The solid
curve shows the echo amplitude vs T given by Eq. �26�. It can be
seen that an average of signals with a range of pulse areas will
result in a signal shape that can be described by Eq. �26�.
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the form of a beat note at 250 MHz. The two outputs of the
detector are mixed down to dc using the rf oscillator used to
drive AOM3 and AOM4. The rf used to produce one of the
dc components is phase shifted by � /2 with respect to the rf
used to derive the other dc component. The two dc compo-
nents are filtered using a 20 MHz low-pass filter and repre-
sent the in-phase and quadrature components of the back-
scattered electric field. This backscattered electric field is the
characteristic echo envelope shown in Fig. 2. These signals
are squared and integrated over the duration of the signal �a
few �s�. The positive square root of the sum of the squared
signals represents the echo amplitude. AOM2, AOM3, and
AOM4 are controlled by digital delay generators. The time
base of these generators is referenced to a 10 MHz signal
from a Rb atomic clock with an Allan variance of 2�10−12

at 100 seconds. The 250 MHz oscillator used to drive AOM3
and AOM4 is also phase locked to the Rb clock.

An alternate detection scheme for intensity detection is
shown in Fig. 7�b�. This scheme uses only AOM2 and
AOM3 as well as a retroreflecting mirror to produce standing
wave pulses. A shutter with a closing time of �600 �s for
the 4 mm excitation beams is used to block the retroreflec-
tion at the time of the readout pulse. In this case, the echo

envelope is detected using a gated photomultiplier tube
�PMT�. The PMT has a rise time of �10 ns and the gate can
be fully opened on a time scale of 100 ns. Since the shutter
has a jitter of �200 �s, the smallest pulse separations, T, for
which the echo can be recorded is �1 ms. The echo enve-
lope, which resembles the square of the signal shape shown
in Fig. 2 is recorded using a 20 MHz low-pass filter. The
echo envelope is integrated over the duration of the signal
�few �s� to obtain the echo amplitude.

The peak intensities of the standing wave beams are I
�10Isat where Isat=7.56 mW cm2 is the saturation intensity
for equally populated magnetic sublevels of the F=3 85Rb
ground state. The durations of the first and second standing
wave pulses are 500–800 ns and 30–200 ns, respectively.
The echo signal is detected using a readout pulse that has the
same detuning as the excitation pulses.

IV. RESULTS

The simplified expression for the echo amplitude in the
absence of SE given by Eq. �18� shows that the period of the
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FIG. 7. Experimental setup for the cases of heterodyne detection
in �a� and photomultiplier tube �PMT� detection in �b�.
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FIG. 8. Echo amplitude vs T: Illustrates the difference in �q

between �a� counterpropagating excitation beams ���1 mrad� and
�b� excitation beams at an angle of �=� /2. The data are fit by Eq.
�18�. The fits give �q=9.7�104 s−1 and �2=2.1 for �a� and �q

=4.9�104 s−1 and �2=2.2 for �b�. The uncertainty in �q extracted
from the fits is �1 /103 and the signal decay time is much smaller
than the transit time due to collisions, scattered light, and magnetic
field gradients.
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signal depends on q. We have varied q by changing the angle
� between the traveling wave components of the excitation
pulses. When � is set to 180° we observe the periodic signal
shown in Fig. 8�a�. When �=90° the period of the signal is
doubled, as expected, as shown in Fig. 8�b�. In both cases,
the fit by the data was based on Eq. �18� and the point spac-
ing is adequate to resolve the difference in the period. The
fits also included a phenomenological decay term to account
for the exponential decay of the signal amplitude. The decay
in Fig. 8 was primarily due to background light and colli-
sions with rubidium atoms at room temperature. For precise
measurements of �r we rely on Eq. �26�, which includes the
effects of both SE and spatial profile, and we take data with
a point spacing of �250 ns. Figure 9 shows the dependence
of �r on � for the case when the angle is varied over a small
range with respect to �=180°. Both Figs. 8 and 9 show that
the recoil frequency has the predicted dependence on angle
given by �q=�q2 /2M and q=2k sin � /2. For precision mea-
surements of �r �11�, which are carried out at ��180°, the
data are corrected for the angle using the fit shown in Fig. 9,
which is based on the predicted expression �r���
=�r�180° �cos2�� /2�, where �=180°−�.

Figure 10 shows a test of the predictions of Eqs. �17� and
�25� for the echo envelope. For large detunings the data are
accurately modeled by Eq. �17� and symmetric envelopes are
obtained. The pulse area is varied by increasing the duration
of the second standing wave pulse and the effect of sponta-
neous emission is varied by changing the detuning. Both
effects cause asymmetric signal shapes. Data represented by
squares are fit using Eq. �17� and the data represented by
circles and triangles are fit using Eq. �25�.

We now use the theoretical treatment in Sec. II to illus-
trate the effects of SE and spatial profile on the echo ampli-
tude. In Fig. 11 the data represent a single recoil period. The
point separation is 250 ns and fits are based on Eqs. �18�,
�25�, and �26�. It is clear that the expression based on Eq.
�26� that includes the effects of both SE and spatial profile is
necessary for obtaining an accurate fit to the amplitude of the
periodic signal.

To illustrate the importance of Eq. �26� for a precision
measurement, we show a typical measurement of �q in Fig.

12. The echo amplitude is recorded over two widely sepa-
rated periods. In this case a multiparameter fit based on Eq.
�26� gives a fit error for �q of �3 parts per 106 �ppm�. The
fit also includes a Gaussian decay parameter to account for
the signal decay. The other fit parameters �A ,b ,d ,�� are de-
termined to a precision of �10%. Similar fit errors for A, b,
d, and � are obtained for all fits based on Eq. �26� �Figs.
11–13 and 15�. With the exception of Fig. 12 �in which the fit
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FIG. 9. Shows a fit by data measuring �q as a function of �. The
fit function is b cos2�a� /2� where a=0.991±0.016 and b
=97004.4±0.6 s−1.
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FIG. 10. Background subtracted traces of the echo envelope
obtained by backscattering the readout pulse from the atomic cloud.
The traces represent an average of 32 repetitions. The typical back-
ground is typically 1% of the amplitude of the echo envelope.
Squares represent a symmetric echo envelope recorded with �
=55 MHz and �2=155 ns. Fit to Eq. �17� �solid line� gives a tem-
perature of �80 �K, �1=1.4, and �2=2.8. Circles represent asym-
metric echo envelope obtained by increasing the second pulse du-
ration to �2=300 ns. Fit to Eq. �25� �solid line� gives temperature of
90 �K, u1=0.9, and �=−.025. Triangles represent asymmetric echo
envelope obtained with �=25 MHz and �2=155 ns. Fit to Eq. �25�
�solid line� gives temperature of 60 �K, u1=4, and �=−0.03. The
central minima at �t=0 is nonzero due to a limitation of the PMT
detection system. The signal levels at �t= ±2 �s represent the true
zero of the signal. For heterodyne detection, �see data overlaid in
Fig. 2� the signal at �t=0 has been verified to be zero within ex-
perimental error.
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error for �q is �3 ppm�, the fit error for �q is typically
�1 /103. The data in Fig. 12 have a long decay time com-
pared to the time scale in Figs. 8 because the effects of
background collisions, stray light, and magnetic field gradi-
ents have been reduced. The importance of including the
effects of SE and spatial profile on a precision measurement
of �q are quite dramatic. For example, �q can be determined
to a precision of �1 /1000 if the signal decay time is �1 ms
�10,13�. Although the signal decay time in Fig. 12 has been
increased by only a factor of �20 the precision in �q has
improved by a factor of �1000. Since the precision increases
linearly with T, it can be seen that the improvements to the
theoretical expressions used in the fits have contributed as
much as a factor of �50 to the improvement in precision.

To understand the predictions for the effect of the atom-
field coupling on the echo amplitude, we vary the pulse area
�2 by adjusting the duration of the second standing wave
pulse as shown in Fig. 13. The data were fit using expression
�26�. As expected, the signal shape shows a sinusoidal de-
pendence for small pulse durations ��40 ns� and sharply de-
fined minima for longer pulse durations ��500 ns�. The nar-
rowing of the signal shape in the vicinity of the zeroes is
attributed to interference of higher-order momentum compo-
nents that are rephased by the second standing wave pulse.
Thus, controlling the pulse width plays an important role in

decreasing the relative uncertainty in determining the posi-
tions of the zeros.

Figure 14 shows the dependence of the effective pulse
area �given by the product of the fit parameters b and d in
Eq. �26�� on �2. For these data the Raman-Nath criterion was
satisfied for pulse widths up to �3 �s. We note that in Eq.
�18� the pulse area of the second standing wave pulse is
defined as �2= ��1

2 /8���2 where �2 is the pulse duration.
This equation predicts that the pulse area should increase
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FIG. 12. A typical recoil measurement with �=50 MHz. The
measurement is carried out by fitting the data by Eq. �26� and con-
sists of one recoil period recorded at T�900 �s and a second recoil
period recorded at T�9000 �s. The fit gives �q=97 008.5�4� s−1.
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FIG. 13. The effect of varying the pulse area of the second
excitation pulse on the signal shape with �=70 MHz. The fit func-
tions are based on Eq. �26� and the pulse durations are �a� 40 ns, �b�
60 ns, and �c� 100 ns.
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linearly with pulse duration. Therefore the slope of pulse
area vs �2 represents the strength of the atom-field interac-
tion. However, Fig. 14 shows that the effective pulse area
increases linearly for small �2 and remains unchanged for
larger �2. We explain this effect by noting that the bandwidth
of the first pulse limits the number of momentum states dif-
fracted at t=0. As �2 increases, the pulse area extracted from
the fits increases as more high-order momentum states are
rephased. When the second pulse is comparable in duration
to the first excitation pulse, all higher-order momentum
states excited by the first pulse can be rephased. Therefore,
there is no change in the pulse area extracted from the fits if
the second pulse duration is further increased. We note that
the bandwidth of the second standing wave pulse decreases
with increasing pulse duration. Although this reduces the or-
der of recoil components that are rephased, it would also lead
to a decrease in measured pulse area which is not observed.
The measured beam power, spatial profile, and pulse dura-
tion can also be used to infer the pulse area. The value of the
pulse area extracted from fit parameters b and d agrees with
the experimental value within a factor of 2 for pulse dura-
tions up to �400 ns in Fig. 14.

To test the effects of SE on the echo amplitude, we varied
the parameter � given in Eq. �21� by changing the detuning
of the standing wave pulses. It can be seen from Fig. 15 that
SE produces a pronounced asymmetry in the echo amplitude
in the vicinity of the zeros that is predicted by theory. The
data is once again fit to Eq. �26�.

Figure 16 shows the associated effect of SE on the tem-
poral offset of the T dependent signal. Here � is varied by
changing either the � or �2. It is clear on the basis of Eq. �21�
that � should depend on �. As discussed later in this section,
� is also influenced by �2. In Fig. 16 the temporal offset is
extracted from a fit to a single recoil period in the vicinity of
�1 ms based on Eq. �26�. Independent measurements in Ref.
�11� have shown that the temporal offset does not affect the
recoil frequency. However, in the presence of cloud launch,
as T is varied, the detunings for the two excitation pulses are
not the same. In addition, some atoms only sample a limited
extent of the spatial profile. This causes changes in the value
of � extracted from fits taken at different pulse separations,

T. Although this effect is generally small, a systematic varia-
tion in the temporal shift implies a variation in the value of
�q since the function used to fit the data is not periodic in
this case. Therefore, high precision studies of �q rely on
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FIG. 14. The measured pulse area as a function of second exci-
tation pulse duration.
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FIG. 15. The effect of varying � on the signal amplitude. In this
case � was decreased by reducing the detuning and the signal shape
is fit to Eq. �26�. The values of � are �a� −0.018 and �b� −0.034.
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FIG. 16. Temporal shift extracted by fitting to a single recoil
period. In this case the temporal shift was varied by changing the �
and �2. The shift is proportional to the measured � parameter. The
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value of � extracted from the fit is �5%. The horizontal axis rep-
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quantifying this effect. The variation in � between widely
separated recoil periods shown in Fig. 12 is negligible at
higher detunings ��500 MHz�. Under these conditions, the
variation in the temporal offsets predicted by fits to widely
separated periods can be as small as 0.01 ns. In comparison,
the recoil period is determined to a precision of �30 ns for a
�3 ppm measurement shown in Fig. 12.

A plot of �2 tan��� �using � extracted from fits and forc-
ing the fits through the origin� shows the linear trend pre-
dicted by Eq. �21� as a function of � for suitably large de-
tuning as shown in Fig. 17. It can be seen that the slope in
Fig. 17 represents the effective radiative rate of the system
�rather than the radiative rate associated with an isolated
atom�. This figure also shows that the effective radiative rate
varies as a function of the duration of the second excitation
pulse, �2. We discuss a possible explanation for this effect
based on numerical simulations using a dressed state analy-
sis. An outline of these simulations is discussed at the end of
this paper.

To explore the influence of spontaneous emission in more
detail, we extract the quantity � defined by Eq. �21� from the
fits. To improve the accuracy of � extracted from fits, we
used data containing two adjacent recoil periods at T
�1 ms. The dependence of � �extracted from �� on �2 for a
fixed detuning is shown in Fig. 18. To acquire this data, it
was necessary to progressively reduce the intensity of the
second standing wave pulse as the pulse duration was in-
creased to ensure a suitable signal to noise ratio. The data
show that the effective radiative rate varies smoothly as a
function of �2 and approaches the expected value for an iso-
lated atom for suitably long pulses. Since the intensity of the
second standing wave pulse was varied for the data in Fig.
18, we verified that the measured radiative rate does not
show a strong dependence on the intensity of the second
standing wave pulse. The continuous variation of �eff in Fig.
18 also suggests that any intensity dependence was
insignificant.

It is interesting to note that the uncertainty in the
asymptotic value of �eff is of the order of 1%. If the theoret-

ical basis for the dependence of �eff on �2 is fully under-
stood, this technique could potentially be exploited for an
atom interferometric measurement of the radiative rate.
However, such a measurement would be useful only if a
precision of �0.1% �characteristic of the best measurements
of radiative rates� can be obtained �22�. The experimental
challenges associated with improving this measurement
could involve different methods of data analysis. In this
work, � is extracted from fits to one or two adjacent recoil
periods. Therefore, a higher precision can be expected by
recording a sequence of recoil periods. Alternatively, it may
be possible to improve the precision by increasing the accu-
racy with which the temporal offset can be determined and
using the correlation between the temporal offset and � as
shown in Fig. 16 to extract �eff. To reduce the error in the
temporal offset, it would be necessary to record widely sepa-
rated zeroes of the echo amplitude and measure �q, and then
find the temporal offset by extrapolation.

In summary, the effect of spontaneous emission was in-
troduced as a phenomenological decay rate in Eq. �1�. The
theoretical predictions for SE presented in this paper have
been successful at predicting the echo envelope and
T-dependent echo amplitude as shown in Figs. 10–13 and 15
and contributed to a considerable improvement in the preci-
sion of �q. The behavior of the temporal offset in Fig. 16 and
the detuning dependence in Fig. 17 are also consistent with
predictions. However, the value of � extracted from the fits
shows that the measured radiative rate is not that of an iso-
lated atom and that the radiative rate depends on the pulse
duration �2 as shown in Figs. 17 and 18.

To model the effect seen in the experiment �Fig. 18� we
have carried out numerical simulations �24� in the dressed
state basis, which is a well-known approach for studying
standing wave excitation �25,26�. The simulations do not in-
clude the effect of atomic recoil. In this model, as the pulse
width increases, the atoms experience damped harmonic mo-
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FIG. 17. �2 tan��� vs � shows a linear dependence. Circles
represent �2=220 ns and squares represent �2=120 ns. The slopes
represent the variation in the effective radiative rate of the system
and are 2.0 and 3.5 MHz for �2=120 ns and �2=220 ns,
respectively.

FIG. 18. Measured value of �eff vs �2. The effective radiative
rate is scaled relative to �N. The power of the second standing wave
pulse was adjusted to ensure sufficient signal to noise. The diameter
of the interferometry beam was approximately 1 cm, which corre-
sponds to a peak Rabi frequency of �0�5�N and �=40 MHz. The
maximum �eff observed is �1�N within error. The errors in �eff

extracted from fits were typically the size of the points shown in the
graph.
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tion and channeling into the nodes of the standing wave po-
tential. As a result, the atoms sample different portions of the
spatially varying potential, which causes small changes in
the populations of the dressed states. The motion also causes
a mixing of dressed states within in a single manifold. The
effective radiative rate is the sum of two radiative rates, one
for each transition from the mixed state to the dressed states
in the next lower manifold. This rate can be shown to be
position dependent and this dependence is caused by the
variation in the field intensity due to the standing wave po-
tential and the spatial profile of the excitation beams. By
studying the evolution of 2.5�104 atoms, we find that the
effective radiative rate increases as a function of pulse dura-
tion and exhibits an oscillatory behavior related to the mo-
tion in the standing wave potential. The effective rate also
approaches an asymptotic value for the range of �2 used in
the experiment. However, the variation in the effective radia-
tive rate is only �10% of the range shown in Fig. 18. The
simulations also show a dependence on Rabi frequency that
is not observed in the experiment. We conclude that a more
complete theoretical understanding is necessary to explain
the measured dependence of the radiative rate on �2.

V. CONCLUSIONS

We have presented a detailed study of the dependence of
the echo envelope and echo amplitude on �k, atom-field cou-
pling, spatial profile, and spontaneous emission. All these
effects have a significant impact on high precision measure-
ments of �r using this technique. This work also shows that
the simplified treatment of the echo signal in Eq. �18� �10� is
not sufficient to understand the details of the signal shape
and for carrying out precision measurements. We have ob-
served a variation in the radiative rate as a function of the
interaction time of the second excitation pulse, an interesting
effect that can be fully interpreted based on improved theo-
retical understanding.

We have reported a precision measurement of the recoil
frequency precise to 2.5 ppm based on the AI discussed in
this paper �11�. The time scale of the experiment was
�10 ms and the results showed reduced sensitivity to a
range of systematic effects compared other AIs. This work
allows us to undertake measurements of the recoil frequency
on a time scale of �100 ms using an expanded interaction
region and further extending the time scale in a fountain for
achieving a competitive measurement. This has been an area
of active research since many high profile experiments have
recently demonstrated precision measurements of the fine
structure constant � at the level of 10 parts per 109 �ppb� or
better. These include the most precise atom interferometric
measurement �2� �precise to 7.4 ppb� as well as the most
precise noninterferometric measurement using cold atoms
�27� which has attained a precision of 6.7 ppb. Other recent
measurements of � are based on Helium spectroscopy �pre-
cise to 10 ppb� �28�. The goal of these measurements is to
provide independent tests of quantum electrodynamics by
measuring � at the same level of precision as the improved
electron g factor measurement �29,30� that was recently re-
ported.

The AI discussed in this paper is an independent tech-
nique that has the potential for obtaining a measurement of �
precise to a few ppb. The primary requirements for complet-
ing the measurement that is underway are the elimination of
magnetic field gradients and increasing the size of the inter-
action region.
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APPENDIX

Here we describe the steps involved to modify the identity
11 to allow for complex arguments. We start with the gener-
ating function �17,31�

e�/2�t−1/t� = �
n=−�

�

tnJn��� . �A1�

If t= ieiqx, then t− t−1=2i cos�qx� and Eq. �A1� becomes

ei� cos�qx� = �
n=−�

�

inJn���einqx. �A2�

Now, using the Bessel function identity

J���̄�� z − z�e−i�

z − z�ei� ��/2

= �
l=−�

�

Jl+��z�Jl�z��eil�, �A3�

where

�̄ = �z2 + z�2 − 2zz� cos � , �A4�

implying the geometry shown in Fig. 19. We can see from
this geometry that

z − z� cos � = �̄ cos 	 , �A5a�

z� sin � = �̄ sin 	 , �A5b�

and therefore

z − z�e−i�

z + z�ei� =
�̄ cos 	 + i�̄ sin 	

�̄ cos 	 − i�̄ sin 	
= e2i	 �A6�

and Eq. �A3� becomes

� �
"

"# �

FIG. 19. Geometry.
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ei�	J���̄� = �
l=−�

�

Jl+��z�Jl�z��eil�. �A7�

The situation for summing pairs of Bessel functions with the
same argument can be visualized on the basis of an isosceles
triangle with equal interior angles 	 and equal sides z=z�
=u. In this case

�̄ = u�2�1 − cos �� = 2u sin��/2� , �A8�

so that Eq. �A7� becomes

J�„2u sin��/2�… = e−i�	 �
l=−�

�

Jl+��u�Jl�u�eil�e−2il	. �A9�

We are interested in the case where the arguments of the
Bessel functions z and z� are complex and defined by z
=ue−i� and z�=uei�, where u and � are defined by Eqs. �20�

and �21�, respectively. Equation �A4� is then modified as

�̄ = 2u�sin��/2 + ��sin��/2 − �� �A10�

and Eqs. �A5a� and �A5b� can be combined to give

2iue−i�/2 sin��/2 − �� = �̄ei	. �A11�

Algebraic manipulation of Eq. �A11� gives

ei	 = ie−i�/2�sin��/2 − ��
sin��/2 + ��

�A12�

and Eq. �A9� becomes

i�J���̄�� sin��/2 − ��
sin��/2 + ����/2

= �
l=−�

�

ei��/2Jl+��ue−i��Jl�uei��eil�.
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