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We describe a simple time-of-flight technique for measuring the magnetic moment of an optically pumped
magneto-optical trap. The technique relies on free-expansion imaging of a cold atom cloud in a small magnetic
field gradient without the need to detect spatial separation between magnetic sublevels. We find that the effective
acceleration of the cloud can be used to characterize extreme state optical pumping. In the general case, we show
that the integrated displacement of the falling cloud can be accurately modeled using rate equation simulations
of magnetic sublevel populations, and knowledge of local magnetic fields, field gradients, and light intensities.
The agreement between the model and the data allows the reconstruction of magnetic moments and suggests that
this technique may be suitable for the measurement of population distributions over a range of optical pumping
conditions. ©2020Optical Society of America

https://doi.org/10.1364/JOSAB.388995

1. INTRODUCTION

The realization of magneto-optical traps (MOTs) [1,2] has led
to several fascinating experiments relating to many-body inter-
actions that include Feshbach resonances [3], Bose–Einstein
condensation (BEC) [4,5], and investigations of Mott insulator
transitions [6]. MOTs have also provided reliable samples of
cold atoms necessary for atomic frequency standards [7,8] and
precision measurements using atom interferometry [9–11].
More recently, MOTs have been developed as portable sen-
sors for remote sensing applications, such as measurements
of gravitational acceleration, gravity gradients, and rotations.
World-wide efforts to generate MOT-based sensors include
aircraft-based freefall experiments [12], cold atom payloads in
near-Earth orbits [13], and experiments based on freely falling
[14] or rocket-launched BECs [15]. Such experiments rely
on magnetic state preparation through optical pumping and
efficient methods of characterizing MOTs [16,17]. Therefore,
reliable techniques to measure magnetic sublevel distributions
are of considerable practical consequence.

While sensitive in situ techniques, such as Faraday spec-
troscopy [18–20] and nonlinear magneto-optical resonance
[20,21] have been developed for characterizing magnetic fields,

magnetic field gradients, and monitoring the initial conditions
of atom traps, making direct measurements of the magnetic
moment and magnetic sublevel populations in a MOT remains
a challenging problem. This is primarily because the laser beam
configurations involve complex light polarizations that result
in optical pumping of a multilevel atom and produce spatially
varying population distributions across the sample. A common
technique for determining the magnetic sublevel populations
is to apply a Zeeman shifting magnetic field after the turn-off
of the confining forces, followed by absorption or fluorescence
spectroscopy using optical [16,22,23] or RF fields [24,25].
However, such an experiment requires separate probe lasers or
RF sources that must be pulsed and scanned across the atomic
resonances.

An alternate approach involves dropping state-prepared
atoms through a region with a well-defined magnetic field gra-
dient that is sufficiently strong to spatially separate magnetic
sublevels, and observing the resulting time-of-flight fluores-
cence spectra of atoms falling through a sheet of light placed
below the cloud. This technique, originally used to characterize
population transfer to a target state using adiabatic rapid passage
[26], has since been coined the longitudinal Stern–Gerlach
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time-of-flight method and has been used to measure magnetic
sublevel population distributions in MOTs [27].

In Ref. [27], the atoms fall through a relatively long (⇠1 m)
zone in which a strong magnetic field gradient is applied result-
ing in the spatial separation of the individual magnetic sublevel
populations along the vertical direction before time-of-flight
detection with a sheet of light. The original Stern–Gerlach
geometry [28,29] has also been used for measuring population
distributions in the atomic beam experiments in Ref. [30]. In
Ref. [30], a magnetic field gradient was applied transverse to
the direction of the atomic beam so that the magnetic sublevels
were physically separated in a downstream imaging plane. The
separated states were imaged by applying a perpendicular laser
beam and detecting the spatially resolved fluorescence. This
type of spatial separation has also been achieved in work involv-
ing ultra-cold atoms held in an optical dipole force trap at a
temperature < 1 µK [31]. In these experiments, a magnetic field
gradient was used to separate and expel all but the mf = 0 sub-
levels from the trap, where mf refers to the magnetic quantum
number. There is also an entirely separate class of experiments
[32–36] that have employed a Stern–Gerlach-like approach for
the study of spinor-BECs. As in Ref. [31], the narrow velocity
distribution of the sample ensures the center-of-mass separa-
tions of different magnetic sublevels, so that their evolution can
be imaged.

In this paper, we address a very different problem, namely,
the reconstruction of magnetic moments and the possibil-
ity of measuring magnetic sublevel populations in relatively
hot clouds of atoms, where the velocity distributions of the
samples are orders of magnitude larger than those of a BEC.
Further, we apply a relatively weak magnetic gradient over a
small drop-zone to observe the differential force on the magnetic
sublevels. Due to these features, our work also differs from
other Stern–Gerlach measurements that use long path lengths
[27,30] and much larger magnetic field gradients [26,30] to
spatially separate magnetic states. Although spatial separation
of the magnetic sublevels is not achieved in our work, we show
that free-expansion imaging of the relatively hot, atomic cloud
falling in a weak magnetic gradient, combined with trajectory
analysis of the center of mass, can serve as an interesting tech-
nique for magnetic moment reconstruction [37]. In addition,
we show that the integrated cloud displacement provides a con-
venient metric to quantify the trajectory of the centroid. Our
work suggests that it is possible to develop a compact alternative
to absorption spectroscopy applicable to relatively hot laser-
cooled samples where space constraints preclude the installation
of extended time-of-flight setups or drop zones with appreciable
magnetic field gradients. Furthermore, our technique is not
confined to any particular orientation, since the evolution of
the cloud can be accurately tracked and modeled in all three
dimensions.

2. OPERATIONAL PRINCIPLES

Free-expansion imaging has proven to be particularly useful
for measuring the temperature of cold atomic samples [23,38],
while position measurements of the falling cloud allow the
gravitational acceleration to be measured with a statistical
precision of 0.1% [23]. In the presence of a magnetic gradient

@Bz/@z, atoms in each of the sublevels experience an additional
force Fm = µ@Bz/@z along the direction of the gradient, where
µ = µb g f mf is the magnetic dipole moment. Here, µb is the
Bohr magneton, and g f is the Landé g-factor.

We optically pump a cloud of 85Rb atoms to the stretched
states of the ground state manifold (F = 3, mf = ±3) and show
that the measured acceleration of the cloud can be used to char-
acterize extreme state optical pumping. For the general case of
partial pumping, our work shows that moment reconstruction
can be achieved by either fitting to the center-of-mass trajectory
or, even more simply, by measuring the integrated displace-
ment of this trajectory to infer the time-dependent evolution of
magnetic sublevel populations during optical pumping. Since
the dynamics of an optical pumping curve are well understood
if the driving fields and polarizations are specified, we rely on
such curves to validate the accuracy of our technique. We also
find that measurements of the cloud displacement are in good
agreement with a model that simulates and integrates cloud dis-
placement. The model relies on magnetic sublevel populations
obtained from a multilevel rate equation simulation as well as
accurate knowledge of light intensities, magnetic fields, and
magnetic field gradients in the vicinity of the falling cloud.

We now describe the experimental setup and diagnostic
measurements, followed by the results and discussion of the new
technique developed in this paper.

3. EXPERIMENTAL DETAILS

Figure 1(a) shows a schematic diagram of the optical layout for
the experiments. The trapping light, derived from an exter-
nal cavity diode laser (ECDL) [39] is locked 90 MHz below
the F = 3 ! 40 resonance in 85Rb (!0) and upshifted with a
235 MHz acousto-optic modulator (AOM). This light seeds a
tapered amplifier (TA) with an output power of ⇠2 W. The out-
put of the TA, at a frequency of !0 + 145 MHz, is dual-passed
through a downshifting 80 MHz AOM and directed into two
separate optical fibers. The output of one of these fibers pro-
duces a horizontal trapping beam oriented along the symmetry
axis of the trapping anti-Helmholtz coils, perpendicular to the
plane in Fig. 1(b). The output of the second fiber is divided using
a fiber splitter to produce two orthogonal beams oriented along
the radial direction of the anti-Helmholtz coils, each at 45 deg
from the vertical. This configuration produces ⇠60 mW in each
of the incident trapping beams tuned ⇠15 MHz below !0. A
separate repump laser, locked ⇠40 MHz above the F = 2 ! 30

transition and amplitude modulated by a 40 MHz downshifting
AOM, is combined with the trapping light and coupled into
fiber #1 and fiber #2.

The non-diffracted beam from the 80 MHz trapping AOM
is directed into a third fiber launch. The output of this fiber is
frequency downshifted 265 MHz with an AOM to generate an
optical pumping beam resonant with the F = 3 ! 30 transi-
tion. A separate ECDL produces a secondary CW repump beam
that is combined with the F = 3 ! 30 optical pumping beam
using a 50:50 beam splitter.

The atom trapping vacuum chamber [see Fig. 1(b)] includes
a ⇠1 m pyrex tube with a square cross section and sides of 10
cm. The outputs of the orthogonal fiber beams are expanded
to a diameter of 36 mm and retro-reflected through the center
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(a) (b)

Fig. 1. (a) Schematic diagram of optical layout showing laser frequencies and detunings. The output of fiber #1 produces the horizontal trapping
beam, and the output of fiber #2 is split to generate the 45 deg angled trapping beams. (b) Schematic diagram of the trapping vacuum chamber
(blue/gray). The horizontal trapping beam travels along the symmetry axis of the anti-Helmholtz MOT coils perpendicular to the plane of the figure.
The quantizing magnetic field and the optical pumping beams are aligned along the vertical (z) direction.

of a 40 cm drop zone in the pyrex cell. The magnetic fields and
field gradients in the drop zone are suppressed by three pairs of
“Helmholtz” and three pairs of “anti-Helmholtz” coils wound
on square forms [note that these field and field gradient sup-
pression coils are not shown in Fig. 1(b)]. In previous work, this
geometry has proven to be highly suitable for molasses cool-
ing [40–43]. Here, each pair of coils is separated by a distance
⇠0.54L , where L is the side length of the coils and produces
uniform fields and field gradients with minimal curvature
across the drop zone. Measurements of magnetic fields and
field gradients around the drop zone, using a flux-gate magne-
tometer, suggest passive suppression at levels of ⇠10 mG and
⇠1 mG/cm. The longest observation times in these experi-
ments (⇠60 ms) correspond to cloud displacements of ⇠2 cm.
Over these distances, magnetic field simulations show maxi-
mum variations of ⇠4 mG for magnetic fields and ⇠2 mG/cm
for magnetic field gradients.

Figure 1(b) also shows the trapping anti-Helmholtz coils
that have a symmetry axis along the horizontal trapping beam.
These coils can be turned off on the time scale of ⇠200 µs and

turned on in ⇠10 ms using an integrated gate bi-polar tran-
sistor (IGBT). The entire apparatus is vibration isolated using
a sub-Hertz platform and a pneumatically supported optical
table. Measurements of trap loading (time constant ⇠20 s)
suggest a rubidium vapor pressure of ⇠10�9 Torr inside the
pyrex chamber.

Figure 2(a) shows a diagnostic temperature measurement
obtained by imaging the free expansion [23]. The images of the
cloud in the x � z plane (where x is the horizontal and z is the
vertical) are recorded on a CCD camera placed ⇠55 cm away
from the MOT and looking along the y direction, as shown in
Fig. 1(b). To acquire each image, the trap is fully loaded with
⇠2 ⇥ 108 atoms. After the turn-off of the magnetic field gradi-
ent, and the trapping and repumping beams, the laser beams are
turned back on to illuminate the falling cloud after various delay
times separated by 1 ms intervals, for up to ⇠60 ms after cloud
release. For each delay interval (or “drop time”) 10 individual
images are recorded and averaged. During each repetition, the
CCD camera shutter is triggered to open for 500 µs, starting at
the time at which the trapping and repump beams are turned
back on. The data in Fig. 2(a) are fit to a hyperbola given by

(b)(a)

Fig. 2. (a) Ballistic expansion showing the cloud radius as a function of time after cloud release. The fit line of R(t) =
q

R
2
0 + (ut)2 gives R0 =

(1.95 ± 0.01) mm, u = (111.8 ± 0.4) mm/s, and an inferred temperature T = (63.6 ± 0.5) µK. (b) Centroid displacement of a falling cloud. The
fit line of z(t) = g t

2/2 + vzt + z0 gives z0 = (0.22 ± 0.08) mm, vz = (72.0 ± 5.1) mm/s, and g = (�9.79 ± 0.16) m/s2.
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R(t) =
q

R
2
0 + (ut)2, where R0 is the initial cloud size, and

u is the most probable speed of the laser cooled sample. The
temperature given by T = mu

2/(2kB ) is ⇠64 µK.
Figure 2(b) shows the vertical trajectory obtained by tracking

the centroid of a falling cloud. To extract the value of gravity, the
cloud positions are fit to z(t) = g t

2/2 + vzt + z0, where g is the
gravitational acceleration, vz is the initial vertical speed due to
cloud launch, and z0 is the initial vertical position. The centroid
positions of the clouds are extracted using two-dimensional
Gaussian fits to the averaged free-expansion images, and the
resulting trajectories are smoothed with a weighted moving
average using a Gaussian kernel (2 ms full width), which is small
compared to the 50 ms timescale of the entire experiment. The
smoothing procedure achieves the same signal-to-noise as a
data set that has ⇠2.5 times more repetitions, and therefore it
serves to reduce the data acquisition time. This centroid track-
ing protocol is utilized throughout this work as the basis for
trajectory analysis.

We now explain a different aspect of the experiment, namely,
the timing sequence required to optically pump the cloud and
change the initial conditions for cloud evolution. Figure 3(a)
shows the timing diagram for optically pumping and imaging
the falling cloud. After the MOT is fully loaded, the trapping
coils are turned off and the atoms are held in a molasses for
⇠4 ms allowing transient magnetic fields to dissipate. The
trapping light is then turned off, followed ⇠90 µs later by the
repump light, to ensure that the F = 2 ground state is fully
emptied. To study the effects of optical pumping, a vertical
quantizing magnetic field of ⇠200 mG is continuously applied
using the large square field cancellation coils. A variable length
optical pumping pulse, resonant with the F = 3 ! 30 transi-
tion, is applied ⇠50 µs after the turn off of the repump beam. As
described in Fig. 1, this beam (power ⇠750 µW) is combined
with the secondary repump beam (power ⇠2.5mW). The two
beams are aligned along the vertical and retro-reflected. Both
beams have average diameters of ⇠1.5 cm.

Figure 3(b) shows the fluorescence signal due to optical
pumping recorded by a photodetector with a rise time of 400 ns
that is ⇠34 cm from the MOT. If the secondary repump beam
is turned off, atoms are optically pumped to the F = 2 ground
state on a timescale <1 µs as shown by the rapid fluorescence
decay. If both optical pumping beams are on and linearly polar-
ized, the fluorescence remains visible for the duration of the

optical pumping pulse. However, if the beams have either �+ or
�� polarization, the atoms are pumped to the stretched states
(F = 3, mf = ±3) on a timescale of ⇠10 µs. In these �+ and
�� cases, the fluorescence should go to zero when the sample
is fully optically pumped because the target states are “dark” to
the circularly polarized optical pumping beams. In practice, for
this “fully pumped” case, we find a small residual pedestal of
fluorescence that we attribute to imperfect polarization of the
optical pumping beams.

For the trajectory analysis leading to magnetic state recon-
struction, the cloud is imaged as it falls through a time-varying
magnetic field gradient arising from re-engaging the trapping
coils. This gradient reaches its steady state value in ⇠10 ms, as
noted earlier. Both the transient turn-on and the steady-state
value are included in simulations of trajectories. In the timing
sequence, the coils are turned on ⇠100 µs after the optical
pumping pulse. In this case, the earliest images are recorded
⇠9 ms after the turn-on of the coils and ⇠14 ms after the initial
turn-off of the coils [see Fig. 3(a)]. Throughout the paper, we use
the steady-state value of the vertical gradient to label the results.

4. RESULTS AND DISCUSSION

A. Effective Acceleration

Figure 4(a) shows the effective acceleration g eff of the falling
cloud for three polarizations of the optical pumping beams
as a function of the steady-state value of the vertical magnetic
field gradient. To avoid sensitivity to the launch velocity, these
data are analyzed by tracking the centroid only from the apex
point of the trajectories and fitting to the functional form
z(t) = g efft

2/2 + z0. Here, the optical pumping beam is turned
on for 50 µs to ensure the sample is “fully pumped” to the
stretched states, as shown in Fig. 3(b). We find that the slopes
for �+ and �� pumping [0.15 ± 0.02 (m/s2)/(G/cm) and
�0.13 ± 0.03 (m/s2)/(G/cm), respectively] agree within
the statistical error and clearly show that extreme state optical
pumping can be distinguished with respect to the case of lin-
ear pumping for which the slope is zero within experimental
error. We also find that the effective acceleration for the linearly
pumped case is indistinguishable from the case of no optical
pumping. This feature of the data suggests that both in the
absence of optical pumping and in the case of linear pumping,
the magnetic sublevel populations are symmetrically distrib-
uted with respect to the mf = 0 ground state. These inferences

(a) (b)

Fig. 3. (a) Timing diagram showing the turn-on and -off of the magnetic field gradient dB/dz, trapping laser LT , repump laser RP, secondary
repump laser 2ndRP, optical pumping beam OPB, and the camera trigger CAM. The leading edge of the camera trigger tEXP, varies from 14 to 64 ms.
(b) Fluorescence imaging for F = 3 ! 30 optical pumping. Shown as a function of the optical pumping time ⌧ .
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(a)

(b)

Fig. 4. (a) Effective vertical acceleration of falling clouds as a func-
tion of the steady-state magnetic gradient in which they fall. Clouds
are optically pumped for 50 µs using �+, �� and linearly polarized
beams. (b) Centroid displacement of a falling cloud in a magnetic
field gradient. The fit line (black) gives z0 = (�0.08 ± 0.07) mm,
and g = (�10.2 ± 0.2) m/s2. The apex point, indicated by an arrow,
represents the beginning of the fit line. The dashed line starting at the
apex points shows the extrapolation of the fit line to earlier times. The
red (gray) curve shows a trajectory simulated using Eq. (1a).

are supported by rate equation simulations presented later in
the paper.

Despite the apparent effectiveness of the parameter g eff as a
simple metric to characterize optical pumping, quadratic fits
to the trajectory data show noticeable disagreement. To obtain
better agreement, we perform comprehensive trajectory analysis
that considers the time-varying magnetic fields and magnetic
field gradients along the path of the cloud. The resultant trajec-
tories can be contrasted with the case of quadratic fitting using a
constant acceleration g eff, as shown in Fig. 4(b).

B. Theoretical Model of Cloud Displacements

It is evident in Fig. 4(b) that the cloud displacement is defined
by a time-dependent acceleration due to the differential forces
on the magnetic moments in the cloud. Therefore, we model
the vertical and horizontal displacements of the falling cloud as
functions of drop time t by

z(t) =
 

g + hµ(t)i @Bz

@z

����
x ,y ,z,t

!
t

2

2
+ vzt + z0, (1a)

x (t) = hµ(t)i @B x

@x

����
x ,y ,z,t

t
2

2
+ vx t + x0, (1b)

where @ Bz

@z

��
x ,y ,z,t

and @ Bx

@x

��
x ,y ,z,t

are the magnetic field gradients
sampled by the centroid of the cloud and

hµi =
X

mf

⇢F ,mf
mf g f µb (2)

is the net magnetic moment of the cloud. Here, the ⇢F ,mf
rep-

resents the magnetic sublevel populations. Such a model appears
suitable to describe falling clouds in small field gradients over the
relatively short drop times in these experiments.

In our case, hµ(t)i is inherently position dependent due to
the spatially varying quadrupole magnetic field generated by the
trapping coils. The time dependence in hµ(t)i results from the
assumption that the magnetic moments of the atoms are able
to follow the changing local magnetic field. This requirement
is related to the adiabaticity condition for Majorana transitions
that project atoms into other magnetic sublevels.

Simulations of these trajectories involve computing the
time-dependent magnetic fields and aligning the magnetic
moment with the local magnetic field at all times. Such cal-
culations require detailed knowledge of the magnetic fields,
field gradients, and laser intensity imbalances (which can pro-
duce cloud launch). Good agreement between the model and
measurements can allow the reconstruction of the magnetic
moments and underlying magnetic sublevel distributions. This
can be achieved by matching both the observed vertical and
horizontal trajectories with simulations. Figure 4(b) shows a
representative vertical trajectory, and Fig. 5(a) shows two hori-
zontal trajectories for opposite pumping conditions. Figure 5(b)
shows the spatial profile of an expanding cloud (shaded region)
along the horizontal direction as a function of drop time for the
�+ trajectory shown in Fig. 5(a). The conditions were chosen
to correspond to a case of partial pumping to ensure that the
population is distributed into multiple magnetic states. The
simulated centroid trajectory is superimposed upon this figure,
and a fit to the spatial profile for the longest free-expansion
time is shown as an inset. This figure illustrates an important
aspect of this technique—that it is not necessary to achieve
discernible spatial separations between the magnetic sublevels
on the timescale of the measurement.

The data in Figs. 4 and 5 also demonstrate the power of
free-expansion imaging in tracking the cloud evolution along
both the transverse and longitudinal directions due to weak
gradients imposed by the same coil. Additionally, we find that
the integrated displacements

R
z(t)dt and

R
x (t)dt , which can

be readily calculated, are particularly convenient metrics for
comparison between the simulations and experiment.

To facilitate these comparisons with data, we carry out rate
equation simulations of the magnetic sublevel populations
due to optical pumping, reconstruct the effective magnetic
moment of the cloud as a function of the optical pumping time
⌧ , and simulate the trajectory of this moment as it falls through a
magnetic field gradient using Eqs. (1a) and (1b).

These simulations consist of a multilevel rate equation model
defined by
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(a)

(b)

Fig. 5. (a) Cloud displacement along the horizontal direction, after
partial pumping to extreme states. Each trajectory shows the evolution
of a cloud in a vertical magnetic field gradient of 5 G/cm and 1 µs of
optical pumping. The solid curves show simulated trajectories for
the same magnetic field gradients and optical pumping time for �+,
blue (dark gray) lines, and ��, orange (light gray) lines, polarizations.
(b) Horizontal cloud evolution after 1 µs of �+ optical pumping in
a vertical magnetic field gradient of 5 G/cm. Shaded region shows
the cloud profile (i.e., 1/e

2 diameter). Solid line indicates the simu-
lated centroid position as a function of drop time, and inset shows a
Gaussian fit to the horizontal cloud profile after a drop time of 53 ms.

d⇢F ,mf

d⌧

=
X

H,mh

�H,F
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H 1 F

mh q mf
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2 )

2 + 12
H,F
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), (3a)
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f 0
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X
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|�F 0,G |2

(0
2 )

2 + 12
F 0,G

⇥
✓

F
0 1 G

mf 0 q mg

◆2

(⇢F 0,m
f 0 � ⇢G,mg

). (3b)

These rate equations can be used to describe the time evo-
lution of the population ⇢ in hyperfine ground states |F , mf i

[Eq. (3a)] and excited states |F 0, mf 0 i [Eq. (3b)] [44–46],
where F is the total angular momentum, and mf is the mag-
netic projection quantum number. Here, 0 is the radiative
rate, �G,H is the population loading rate due to spontaneous
emission for a specified ground state, �G,H is the effective
Rabi frequency, 1G,H is the atom–field detuning, and the

matrices
✓

H 1 G

mH q mg

◆
are the Clebsch–Gordon coefficients

for transitions coupled by spin q . We note that this treatment
ignores atomic coherences and the effects of collisions. Here,
we treat the evolution of the F = 3 ground state populations
in the presence of two optical pumping lasers resonant with the
F = 2 ! 30 and F = 3 ! 30 transitions.

Figure 6 shows the simulated magnetic sublevel population
distributions in the F = 3 ground state for (a) �+ and (b) lin-
ear (equal components �+ and ��) polarizations of optical
pumping of duration ⌧ . Here, we assume that the atoms are
initially equally distributed in the magnetic sublevels of the
F = 3 ground state.

In Fig. 6(a) we see that for �+ optical pumping, the pop-
ulation accumulates in the mf = +3 sublevel, while the
populations in the other sublevels show various transient
forms of depletion. The same population dynamics occur for

(a)

(b)

Fig. 6. Rate equation simulation of magnetic sublevel popula-
tion distributions as a function of optical pumping time ⌧ , for the
F = 3 ground states based on Eqs. (3a) and (3b), for (a) �+ and
(b) linear polarizations. Inset in (a) shows the transient decay of the
mf = �3, �2, �1, 0, +1, and +2 states. Simulations assume a uni-
form population distribution at t = 0, a 50 µs resonant F = 3 ! 30

optical pumping pulse with an intensity of 100 µW/cm2, and a CW
F = 2 ! 30 repump beam with an intensity of 700 µW/cm2.
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the �� case (with accumulation of atoms in the mf = �3 sub-
level). These simulations are not shown. In contrast, for linearly
polarized optical pumping, Fig. 6(b) shows the symmetric
accumulation of the population in the mf = 0 sublevel. This
result is supported by the fluorescence spectra in Fig. 3(b) and
corroborated by the data in Fig. 4(a).

Figure 7(a) shows the effective magnetic moment of the
sample predicted by Eqs. (3a) and (3b) as a function of the
optical pumping pulse duration ⌧ . These predictions pertain
to optical pumping with �+, ��, and linear polarizations. The
vertical axis in this figure is expressed in units of hµi/(µb g f ).
Optical pumping to the stretched states, identifiable by the
saturation of the effective magnetic moment at ±3, occurs with
a characteristic time constant of ⇠6 µs for our conditions. For
linearly polarized optical pumping, the symmetric accumu-
lation of atoms in the F = 3, mf = 0 ground state defines the
unchanging net magnetic moment.

Figure 7(b) shows simulated integrated vertical displacement
as a function of ⌧ for �+, ��, and linear optical pumping polar-
izations. For each polarization, the three curves represent the
evolution of differing magnetic sublevel populations at ⌧ = 0,

(a)

(b)

Fig. 7. (a) Simulated effective magnetic moment as a function of
optical pumping time. Simulations assume a uniform population dis-
tribution at t = 0, a 50 µs resonant F = 3 ! 30 optical pumping pulse
with an intensity of 100 µW/cm2, and a CW resonant F = 2 ! 30

repump beam with an intensity of 700 µW/cm2. (b) Simulated inte-
grated vertical displacement as a function of optical pumping time, for
a cloud in a vertical magnetic field gradient of 5 G/cm. For each optical
pumping polarization, three curves represent different magnetic sub-
level populations at ⌧ = 0: equal distribution (solid lines), exclusively
in the mf = 0 magnetic sublevel (short dashed lines), divided evenly in
the mf = ±3 sublevels (long dashed lines).

which shows the dependence of these predictions on initial con-
ditions and demonstrates the sensitivity required to discriminate
between these trajectories. Matching such curves to measured
integrated displacements can allow the magnetic moment to be
reconstructed and serve as a probe of the underlying magnetic
sublevel population distribution.

C. Magnetic State Reconstruction and Possible
Limitations

Figures 8(a) and 8(b) show, respectively, the integrated vertical
and horizontal displacements calculated from trajectories of
falling clouds observed for 40 ms, as functions of optical pump-
ing pulse duration. These data points correspond to separate
experiments, in which the samples have been optically pumped
with �+, ��, and linear polarizations. The hashed areas specify
the range of simulated values due to the experimental uncer-
tainty of input parameters stated in Section 3. These curves
are generated by assuming equally populated ground states
at ⌧ = 0, and numerically integrating simulated trajectories,
described by Eqs. (1a) and (1b), over drop intervals of 40 ms.
The measurements show that this technique can unambigu-
ously discriminate between population distributions that have
been progressively pumped to extreme states. The excellent
agreement between the data and the simulations shows the effec-
tiveness of our technique to measure net magnetic moments by
photographing falling clouds. Additionally, the agreement over
the range of optical pumping times serves to verify the dynamic
evolution of the magnetic sublevel populations predicted by
Eqs. (3a) and (3b) for a specified initial population distribu-
tion. This agreement also suggests that it may be possible to
reconstruct the magnetic sublevel population distribution for
all ⌧ . Nevertheless, the spread in trajectory evolution due to
the uncertainties imposed by experimental parameters and the
similarity in the integrated displacement curves for different
initial conditions [see Fig. 7(b)] indicate that our technique has
limitations for measuring magnetic sublevel populations.

Despite these limitations, it is possible to envision how this
technique could be used to extract information from a sample
with an unknown initial population distribution. The protocol
for such a measurement would involve determining the inte-
grated displacements resulting from all three polarizations of
optical pumping, and the use of iterative trajectory simulations
to match the data so as to identify the starting distribution as
illustrated in Fig. 7(b). However, detailed comparison with a
complementary technique, such as RF absorption spectroscopy,
would be required to understand the suitability of this approach.

D. Trajectory Analysis

We hypothesize that our model, which assumes adiabatic evolu-
tion of magnetic moments, is successful in recreating the optical

pumping results because Btot =
q

B2
x
+ B2

y
+ B2

z
sampled by

the centroid of the cloud is suitably offset from zero across the
entire observation window.

While a number of theoretical models for Majorana transi-
tions can be used to support the observed trends [47–49], we
find that a straightforward characterization can be based on the
adiabaticity parameter ↵ = !L/(@✓/@t), where !L is the local
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(a)

(b)

Fig. 8. Integrated displacement of a cloud falling in a 5 G/cm
vertical magnetic field gradient as a function of optical pumping time
for (a) vertical and (b) horizontal directions. The hashed areas show
the range of simulated integrated displacements (within experimental
uncertainty of the input parameters) for three polarizations of optical
pumping beam: �+ blue (dark gray), linear green (gray), and ��
orange (light gray).

Larmor frequency and ✓ is the azimuthal angle of the magnetic
field [50]. For our conditions, we find that ↵ � 1 throughout
the observation window, suggesting that the probability for
non-adiabatic transitions is correspondingly small. Although
we have not considered magnetic field variations over the entire
cloud, this conjecture is supported by the finding that trajectory
simulations assuming fully non-adiabatic evolution of magnetic
moments do not match experimental data as well as simulations
that assume adiabatic evolution. In these simulations, adiabatic
evolution refers to trajectories governed by Eqs. (1a) and (1b),
where hµ(t)i is aligned with the local magnetic field for each
time step in the simulation. In contrast, for simulations of non-
adiabatic evolution, hµ(t)i is anti-aligned with the local field
after passing through a magnetic field zero.

5. CONCLUSION

We have presented a simple technique to characterize the mag-
netic moments in a typical MOT, with T ⇡ 100 µK, for which
the local magnetic fields are well known. This work also explores
the sensitivity of the technique to reconstruct the underlying
magnetic sublevel population distributions. A defining aspect of
this technique is that it does not rely on the spatial separation of
magnetic sublevels, as in previous Stern–Gerlach experiments

involving MOTs, atomic beams, and BECs. As such, this tech-
nique is readily applicable in situations where experimental
constraints preclude the use of long drop zones, large magnetic
field gradients, or ultra-cold temperatures necessary to observe
spatial separation of the magnetic sublevels. A disadvantage of
this technique (in comparison with absorption spectroscopy) is
the limited sensitivity to variations in the initial distributions.
However, this technique involves a much simpler setup than
absorption or fluorescence spectroscopy experiments in which
spectra are recorded by sweeping or amplitude modulating a
probe laser after the application of a magnetic field gradient to
Zeeman shift the sublevels. Both the advantages and disadvan-
tages can be better understood through a direct comparison with
other methods such as absorption spectroscopy [16,22–25].
We expect that our technique may be suitable for the rapid
characterization of portable sources of cold atoms that are opti-
cally pumped with well specified optical or RF sources. A more
detailed analysis that considers the magnetic field variations
across the spatial extent of the cloud can be expected to produce
even better quantitative agreement with the observed trends.
Additionally, although we have verified that the cloud does
not move appreciably along the third direction (y ), it is also
possible that simultaneously tracking the cloud along y using a
second CCD camera would provide redundancy and refine the
modeling.
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