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ABSTRACT  

We describe a compact waveguide amplifier system that is suitable for optically pumping rubidium magnetometers. The 
system consists of an auto-locking vacuum-sealed external cavity diode laser, a semiconductor tapered amplifier and a 
pulsing unit based on an acousto-optic modulator. The diode laser utilises optical feedback from an interference filter to 
narrow the linewidth of an inexpensive laser diode to ~500 kHz. This output is scannable over an 8 GHz range (at 780 
nm) and can be locked without human intervention to any spectral marker in an expandable library of reference spectra, 
using the autolocking controller. The tapered amplifier amplifies the output from 50 mW up to 2 W with negligible 
distortions in the spectral quality. The system can operate at visible and near infrared wavelengths with MHz repetition 
rates. We demonstrate optical pumping of rubidium vapour with this system for magnetometric applications. The 
magnetometer detects the differential absorption of two orthogonally polarized components of a linearly polarized probe 
laser following optical pumping by a circularly polarized pump laser. The differential absorption signal is studied for a 
range of pulse lengths, pulse amplitudes and DC magnetic fields. Our results suggest that this laser system is suitable for 
optically pumping spin-exchange free magnetometers. 
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1. INTRODUCTION  
There is widespread interest in developing a new generation of spin-exchange free rubidium magnetometers1 for 
geophysical exploration. These magnetometers can be used in airborne surveys for the improved detection of metal and 
mineral deposits. Magnetometers require laser sources for optical pumping. The laser source should be capable of being 
frequency stabilized with respect to rubidium atomic transitions without the need for human intervention. Additionally, 
the laser pulses should have pulse widths of about 100 ns, repetition rates of several kilohertz and power outputs of a few 
Watts. Here we describe a pulsed laser system based on auto-locked diode laser systems (ALDLS)2-5 that is capable of 
addressing all the required specifications.  

During the last forty years, there have been significant improvements in the sensitivity of vapour cell magnetometers 
used for the rapid detection of small magnetic fields in airborne and terrestrial surveys. These surveys are capable of 
detecting magnetic anomalies and magnetized rocks associated with deposits of metals and minerals. Vapour cell 
magnetometers rely on optically pumping alkali vapours using high power light sources.  

 
Figure 1: Schematic of the rubidium magnetometer consisting of an auto-locked seed laser and tapered amplifier. Separate 
acousto-optic modulators (AOMs) are used to generate an amplified, pulsed, pump laser that is circularly polarized and a 
continuous wave, linear polarized probe laser with the same optical frequency. The pump and probe are aligned at an angle 
of a few milliradian through a rubidium vapour cell. A balanced detector and a current amplifier is used to record the 
differential absorption of the probe laser in the presence of a magnetic field. 
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Figure 1 shows the implementation of a rubidium magnetometer based on references 6 and 7. A circularly polarized 
pump laser (carrying angular momentum σ+) is used to optically pump alkali vapour into a single magnetic ground state 
sublevel. Figure 2 shows a simplified level diagram for a D1 transition.  

 

 

 

 

 

 

 

 

 

Figure 2: Simplified level diagram for an alkali D1 transition. Atoms are optically pumped by circularly polarized light into 
the extreme magnetic sublevel of the ground state where they can no longer be addressed by the laser. 

The vapour becomes spin polarized and transparent to the pump laser when the optical pumping is complete. Therefore, 
monitoring the transmission of the pump laser serves as a convenient method of probing the atomic polarization due to 
optical pumping. An external magnetic field drives a periodic change in population between adjacent ground state 
magnetic sublevels at the Larmor frequency. As a result, the orthogonal, circularly polarized components of the probe 
laser are differentially absorbed and exhibit Larmor oscillations. A balanced photodetector can be used to record these 
Larmor oscillations and measure the magnetic field. 

In a vapour cell, the timescale for the decay of the differential absorption signal is dominated by the transit time of 
optically pumped atoms. This timescale can be significantly extended by the addition of a buffer gas so that the motion 
of atoms is dominated by diffusion. Alternatively, wall coatings can be used greatly reduce depolarization due to wall 
collisions so that the signal decay time is independent of transit time. Under these conditions the dominant depolarizing 
effect is radiation trapping. This effect can be reduced by introducing a small concentration of a quenching gas which 
ensures that excited atoms return to the ground state via collisions before the spontaneous emission of a photon. 
Depolarization can still occur under these conditions through spin-exchange collisions between ground state rubidium 
atoms. Such collisions preserve the angular momentum of the atoms and exchange their hyperfine states. After the 
collision, depolarization occurs due to the opposite direction of spin precession for differing hyperfine states. In spin-
exchange free magnetometers1, the frequency of rubidium-rubidium collisions is increased so that depolarization is 
avoided by constantly cycling the atoms between the two hyperfine states and preventing evolution into other magnetic 
sublevels, thereby allowing sensitivities of ~1 fT Hz-1/2 s. 

Alkali magnetometers have been realized using both D1 and D2 transitions (795 nm and 780 nm respectively for 
rubidium). In a vapour cell without buffer gas, the effect of optical pumping is similar for both D1 and D2 transitions, 
with the most extreme magnetic sublevel being populated by a circularly polarized pump. The differential absorption 
signal arises due to differential absorption of the two orthogonal, circularly polarized components of the probe laser, this 
signal is larger on the D1 transition. In the presence of a buffer gas, the excited state is collisionally broadened and de-
excitation due to collisions or spontaneous emission populate all magnetic sublevels of the ground state with equal 
probability. Under these conditions the atomic polarization for the D1 transition is unaffected, but it is reduced by a 
factor of two for the D2 transition. These considerations make the D1 transition preferable for magnetometric 
experiments. 

2. DESCRIPTION OF LASER SYSTEM 
We have developed a unique, low cost, vacuum-sealed, auto-locked external cavity diode laser system2-5. ALDLS units 
are integrated using components from original equipment manufacturers (OEM) coupled with specially machined parts 
and powerful central processors. The laser’s master oscillator depends on optical feedback from a narrow band 
interference filter to realize a narrow laser line width (~500 kHz)8,9. The thermally stabilized laser cavity can be 
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evacuated within minutes and vacuum-sealed for several months making the system insensitive to environmental 
temperature and pressure fluctuations. The optical feedback from the interference filter can be adjusted from outside the 
cavity using a vacuum feedthrough. The ALDLS can be locked or scanned with respect to a spectral line without the 
need for human intervention using a digital controller that is capable of storing a variety of algorithms in its memory for 
laser frequency stabilization using techniques such as pattern matching and first or third derivative feedback. The laser 
cavity relies on an interchangeable optics kit consisting of a laser diode and optical feedback elements to operate in the 
desired wavelength range. Therefore, the master oscillator can be designed to optically pump both the D2 (780 nm) and 
D1 (795 nm) absorption lines in rubidium.  The laser source can also address spectral lines associated with both 85Rb and 
87Rb isotopes. The ALDLS technology enables additional features such as power amplification of the master oscillator’s 
output of 100 mW to several Watts using semiconductor waveguides10 as well as rapid amplitude modulation using 
acousto-optic modulators (AOMs) and radio frequency (RF) electronics. A schematic diagram of the pulsed laser system 
is shown in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Schematic of ALDLS system consisting of an external cavity diode laser (ECDL) with an auto-lock controller and 
waveguide tapered amplifier (TA). Amplitude modulation is achieved by pulsing an acousto-optic modulator (AOM) with 
RF circuits. 

The output of the master oscillator is fibre coupled through a beam splitter into an auto-lock controller containing a 
saturation-absorption spectrometer and control electronics for frequency stabilization with respect to Rb spectra. Another 
output of the beam splitter is aligned through a 2-W semiconductor waveguide amplifier to increase the power output. 
The AOM utilizes TTL switches to produce suitably short pulses for optical pumping.  

 
Figure 4: Schematic showing components of laser head, and pictures of the laser head and auto-lock controller. 

Figure 4 shows a schematic diagram of the laser head, a laser head, and an auto-lock controller. Optical feedback from a 
narrowband interference filter8,9 is used to realize a laser linewidth of 500 kHz. Laser operation has been demonstrated at 
780 nm and 633 nm (see Figure 5) based on rubidium and iodine spectroscopy, respectively. We characterized the 
system performance through measurements of the Allan deviation of the beat note between two lasers (Figure 5), and 
through a measurement of the Allan deviation of the lock stability of a single laser. The laser frequency was stabilized 
using different auto-locking algorithms selected from the digital controller’s library for these studies. We used third 

Proc. of SPIE Vol. 10514  105140S-3

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 2/26/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



[s] aunl $III$aland 

001 01 1'0 

0.10

0.05

ti
á -0.05

-0.10

-0.15

0.00

-0.20

Third -derivative signal

20 40 60 80 100 120 140 160

Frequency [MHz]

-o .

0.0025 0.0030 0.0035 0.0040 0.0045 0.0050

Time [s]

2000

1500

3 1000
á

500

2000 2500 3300

Injection Current 1mA]

3533 .333

Raw Output
Fibre Coupled

 

 

derivative feedback for iodine spectroscopy, and both pattern matching and first derivative feedback for rubidium 
spectroscopy. The laser linewidth and lock stability allowed precision measurements of gravitational acceleration with 
an accuracy of 3 parts-per-billion (ppb) using a state-of-the-art industrial sensor. Our studies also showed that the 
correction signals were reduced by nearly an order of magnitude by evacuating the air in the laser cavity. Under 
laboratory conditions, the Allan deviation of the beat note between two identical lasers was measured to be 2.5 x 10-11 
for a measurement time τ = 40 s (Figure 5). The Allan deviation of the lock stability of a single laser is 2 x 10-11 for τ = 
80 s, which suggests a similar level of performance. These specifications compare favourably with respect to different 
types of diode lasers11-13. 

 

Figure 5: Third derivative error signals in iodine at 633 nm, Rb spectra at 780 nm, and Allan Deviation of 30 MHz beat note 
between two 780 nm lasers showing a minimum value of 2.5 x 10-11 for τ = 40 s 

The pulsed laser system relies on the amplification of highly monochromatic light from an auto-locking diode laser 
system (ALDLS) using a tapered, semiconductor waveguide amplifier. The amplifier consists of two sections: a 
waveguide, and a tapered gain region. The tapered geometry of the gain region couples the amplified light into several 
spatial modes. This allows the amplifier to operate at high currents without increasing the energy density of the beam 
inside the device to the point where non-linear effects can cause catastrophic self-focusing. Spatially filtered laser light 
from a monochromatic source is coupled into the waveguide section and diffracts into the tapered section such that the 
tapered gain region is completely filled, allowing maximum amplification of the seed light10. Figure 6 shows the 
performance of a 2 W tapered amplifier seeded by 17 mW of light from a seed laser locked to a Rb spectral line  

 

 

 

 

 

 

 

 

Figure 6: Output power of 2-Watt tapered amplifier as a function of injection current recorded with and without fibre 
coupling at a temperature of 16°C. The power input from the seed laser was 17 mW. The straight lines show the 
extrapolated power output for the maximum allowed injection current. 

The amplifier introduces two detrimental effects in the seed light. Firstly, the spatial profile of the beam is distorted by 
the large number of spatial modes associated with the amplifier cavity. Seeding with a filtered TEM00 mode limits the 
output to a subset of spatial modes, but the beam is still far from Gaussian, assuming a more “flat topped” profile with a 
few local maxima. Secondly, the spectral profile of the output beam is modified by the broadband amplified 
spontaneous emission (ASE) from the TA cavity. The simplest way to reduce these effects is to spatially filter the 
output. This process eliminates undesired spatial modes and a large portion of the ASE as well14. However, it comes at 
the cost of the output power of the beam as shown in Figure 6. 
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Figure 7: Spectral characterization of a 2-Watt waveguide amplifier operating at 780 nm with a fibre coupled spectrometer. 
The full width at half maximum (FWHM) of spectral response function of the spectrometer (1 nm) is shown in grey. This 
FWHM is much larger than the linewidth (500 kHz) of the seed laser. The spectrometer transmission is recorded before and 
after an optical fibre that is used to spatially filter the output of the amplifier. At each location, the ASE is recorded by 
blocking the seed light from the ALDLS. The spectrum of the amplified light is also recorded before and after the fibre. 

 

 

 

 

 

 

 

 

Figure 8: Waveguide amplifier output as a function of seed-power. This data was recorded with a 2-Watt amplifier driven 
with an injection current of 1980 mA at a temperature of 16°C. 

 

 

 

 

 

 

 

 

 

 

Figure 9: Output power of 2-Watt waveguide amplifier as a function of temperature. 
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We have characterized the relative intensity of the ASE and its reduction through fibre coupling by using a spectrometer 
with a resolution of 1 nm as shown in Figure 7. The ASE consists of partially coherent light spanning several 
nanometers. We find that the intensity of ASE is three to four orders of magnitude smaller than the amplified light at the 
seed wavelength.  

The output power of the amplifier has been measured as a function of the power of the seed laser as shown in Figure 8. 
The data shows the saturation of the power output of the amplifier as the seed power approaches 30 mW. These results 
also suggest that a single seed laser (power output of 100 mW) can drive up to three waveguide amplifiers.  

3. MAGNETOMETRIC STUDIES 
In this section we present preliminary results of a rubidium magnetometer. Demonstrating the effect of optical pumping 
using the ALDLS. We use the magnetometric configuration shown in figure 1 based on references 6 and 7. Ideally the 
laser would address the rubidium D1 transition at 795 nm to maximize the atomic polarization and the differential 
absorption signal. Since the ALDLS is designed to operate at 780 nm, our experiments are carried out on the rubidium 
D2 transition.  

The pump and probe laser are derived from the same seed laser, and the pump is amplified by a tapered amplifier. The 
two beams are overlapped at an angle of approximately 10 milliradian in a 5 cm rubidium cell at room temperature that 
contains no buffer gas. Identical 80 MHz AOMs are deployed in each beam for amplitude modulation and for ensuring 
that both lasers interact with the same velocity class. Two elliptical magnetic fields coils are used to apply a DC field 
perpendicular to the direction of laser propagation.  

The differential absorptions signal is measured using a balanced detector that contains two reverse-biased photodiodes 
with 10 ns risetimes. The signal is amplified by a current amplifier with a gain of 1 microamp per volt and recorded 
using an oscilloscope with a bandwidth of 100MHz. The data was obtained while operating on the F=3 F’=4 transition 
in 85Rb.  

Figure 10 shows two typical datasets, obtained in the Earth’s ambient field for two different durations of the optical 
pulsing pulse. The timescale for the signal decay is consistent with transit time for rubidium atoms at room temperature. 
The longer pulse results in a 3-fold increase in the signal amplitude due to increased optical pumping but there is a 
decrease in the contrast of Larmor oscillations. For this dataset, the largest signal (a further 3-fold enhancement) was 
obtained with pulse powers of 230 mW, and pulse lengths of 3 µs. This data can be used to develop optical pumping 
simulations. 

 

 
Figure 10: Effect of optical pumping in the Earth’s ambient magnetic field acquired with a pulse power of 164.1 mW, and a 
probe power of 71.8 µW. The trace on the left displays the signal due to a 100 ns optical pumping pulse and the image on 
the right was recorded with a 3 µs pulse. 

Figure 11 shows the effect of varying the external magnetic field due to the coils. The precession frequency is extracted 
from a fit to the Fourier transform of each signal. The fit is the sum of a Gaussian and an exponential decay. The 
variation in the extracted Larmor frequency shows an offset from zero-frequency. We attribute this effect to the 
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component of the Earth’s magnetic field perpendicular to both the applied field and the direction of propagation. The 
Larmor frequency shows a minimum at a nonzero value of the applied field due to the component of the Earth’s field 
along the axis of the coils. This data gives a slope of 0.59 ± 0.02 MHz/G whereas the expected slope defined by the 
Zeeman shift in 85Rb is 0.47 MHz/G. We attribute this difference to the inhomogeneity of the magnetic field across the 
length of the cell and the error in the calibration of the magnetic field sensor.  

 
Figure 11: The left panel is the Fourier transform of a signal used to extract the frequency of Larmor oscillations. The right 
panel shows the oscillation frequency as a function of the magnetic field due to the coils. Here the pump power was 230 
mW, the pump power was 71.8 µW. 

4. CONCLUSIONS 
Our results suggest that compact ALDLS based on tapered amplifiers can be used for optically pumping rubidium 
magnetometers. We plan to extend our studies to vapour cells with both buffer and quenching gasses so that we can 
explore optical pumping in the spin-exchange free regime. These results will be compared against multi-level optical 
pumping simulations.  
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