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Abstract A single-state grating echo interferometer offers unique
advantages for time-domain studies of light–matter interac-
tions using laser-cooled atoms, including applications that
involve precision measurements of atomic recoil, rotation,
and gravitational acceleration. To illustrate the underlying
physics, we first discuss the output signal of the interfero-
meter in the absence of spontaneous emission. The influence
of spontaneous emission, magnetic sublevels, and the spatial
profile of excitations beams on matter wave interference in a
two-pulse interferometer is described, followed by a discus-
sion of transit time limited experiments using a multipulse
technique that offers several advantages. We also exam-
ine the enhancement in signal size achieved by a lattice
interferometer. The sensitivity of the interferometer to mag-
netic gradients and gravitational acceleration is discussed
along with extensions to frequency-domain studies of atomic
recoil and rotation. Applications of coherent transient effects
and echo techniques associated with internal state labeled
interferometers that utilize magnetic sublevels of a single
hyperfine state are considered for precise measurements
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of magnetic interactions such as atomic g-factor ratios. The
article concludes with an overview of the suitability of the tra-
ditional two-pulse photon echo technique for measurements
of atomic lifetimes and studies of superradiant emission in
laser-cooled samples.

1. INTRODUCTION AND DESCRIPTION OF TWO-PULSE
STANDING WAVE INTERFEROMETER

1.1 Introduction

Matter wave interference has intrigued scientists since the early days of
quantum mechanics. It was not until the late 1980s, however, that the field
of atom interferometry was born. There have been a series of beautiful
experiments carried out over the past two decades that have probed the
fundamental nature of matter wave interference using atom interferome-
ters (Berman, 1997). These include interference of “large” objects and of
biomolecules (Hackermüller et al., 2004), interference of independently
prepared particles (Andrews et al., 1997), and the origin of quantum
mechanical complementarity (Durr et al., 1998). Advances in microfab-
rication techniques and the development of laser-cooling and trapping
for neutral atoms has opened up many new possibilities for construct-
ing atomic interferometers (Keith et al., 1988; Weiss et al., 1993). Besides
testing the fundamental nature of matter wave interference, atom inter-
ferometers play an essential role in many high-precision measurements
of fundamental constants, such as the fine structure constant α and the
Newtonian constant of gravity. They offer an independent method for
determining these constants that expands our understanding of the fun-
damental nature of physical laws (Cladé et al., 2006; Fixler et al., 2007;
Weiss et al., 1993). Moreover, precise measurements of quantities such as
the local gravitational field hold promise for technological advances in
navigation and mineral exploration (McGuirk et al., 2002).

This article discusses the physics and various extensions of a particular
atom interferometer design developed at New York University (NYU) in
the mid-1990s (Cahn et al., 1997). The interferometer involves the interac-
tion of a set of pulsed laser fields with a sample of laser-cooled Rb atoms
in a magneto-optical trap. A schematic of the experimental setup of this
interferometer is shown in Figure 1. The principle of the NYU interfer-
ometer is that the interaction of an off-resonant optical standing-wave
pulse (made up of traveling waves with k-vectors k1 and k2) with a two-
level atomic system effectively modulates the atomic ground-state energy
with a spatial period 2π/q, with q = k2 − k1. The pulse therefore acts as
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Figure 1 Schematic diagram of the experimental setup (for σ+-polarized sw
experiment). M =mirror, B = beamsplitter, PD = photodiode, AOM = acousto-optic
modulator, λ/4 = quarter-wave plate, L = lens, PBS = polarizing beam splitter.

a phase grating for atomic de Broglie waves, and an initial atomic plane-
wave is scattered into a set of diffraction orders differing by multiples of
momentum ~q. A second standing-wave pulse, separated from the first by
a time T, produces further diffraction orders, and at various times after the
second pulse, these diffraction orders interfere to produce a spatial mod-
ulation in the atomic density that can be observed by the scattering of a
traveling wave pulse with wavevector k2 into the direction k1. An impor-
tant property of this interferometer is that a high degree of “collimation”
of the atoms is not necessary. This is because, for various times after the
second pulse (called echo times), the relative phase between interfering
diffraction orders is independent of the initial atomic velocity. An interfer-
ometer that is based on the cancelation of this Doppler phase is referred
to as an echo interferometer, in analogy with the spin echo (Hahn, 1950a),
or the photon echo (Abella et al., 1965). Another important feature of this
interferometer is that the measured signal results from coherences involv-
ing a single atomic ground state, making the interference signal relatively
insensitive to external electric and magnetic fields.

Like many of the atom interferometers developed over the past two
decades, this interferometer can be used to make measurements of various
physical quantities of interest to high precision. Examples are the atomic
recoil frequency ωq = ~q2/2M (M is the mass of the test atom), which is
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useful for determining the fine-structure constant α, and inertial effects
such as acceleration and rotation.

The original experiments (Cahn et al., 1997) were carried out with
counter-propagating beams having identical circular polarizations, as
shown in Figure 1. The k1 and k2 beams were independently controlled
with acousto-optic modulators (AOMs). In the experiment, the k1 and k2

beams are simultaneously pulsed at time t = 0 for a duration of about
100 ns, followed by a second standing-wave pulse a time T later. Then,
at a later time in the vicinity of t = (N̄ + 1)T for integer N̄, the resulting
atomic grating is probed by switching on only the traveling wave along k2

and measuring the (complex) amplitude of the light wave scattering into
the direction k1. The scattered wave is detected by beating it with an opti-
cal local-oscillator in a balanced heterodyne arrangement (see Figure 1).
The local oscillator is derived from the light passing undiffracted through
the AOM used to switch the k1 beam. During the experiment, the echo beat
signal is further mixed down by a 220-MHz reference from the rf oscilla-
tor using a quadrature demodulator. The two outputs of this demodulator
represent the real and imaginary parts of the scattered light field, where
the real part is in phase with the k1 field (which is not on during detection),
and the imaginary part is π/2 out of phase with k1. The phase of the sig-
nal is stabilized against mirror motion in between experiments (where an
“experiment” consists of 90% trapping [sample preparation] time and 10%
standing-wave pulse excitation and detection time), by phase-shifting the
rf local oscillator.

1.2 Calculation of the Signal

We model the system as a two-level atom interacting with an off-resonant
optical standing wave (Cahn et al., 1997; Dubetsky, 1997). We assume,
first, that the detuning 1 = ω − ω0 is sufficiently large that the atom
always remains in the ground state and that spontaneous emission can be
neglected. Here ω is the laser frequency and ω0 is the resonance frequency
of the atom. The effects of spontaneous emission are discussed in Section 2.
We also assume that, during the standing-wave pulse, the kinetic energy
term in the Hamiltonian can be neglected (Raman–Nath approximation).
This approximation is valid when ωq τ � 1 and√ωqχ τ � 1 for two-photon
Rabi frequency χ and standing-wave pulse duration τ .

For σ+ − σ+ or Lin–Lin illumination, we treat the separate transitions
as independent two-level systems. For a single two-level system, we can
adiabatically eliminate the excited state (Berman & Malinovsky, 2011) to
obtain an effective Hamiltonian for the atomic ground state

H =
p2

2M
+ V(r, t), (1)
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where

V(r, t) = ~χ(t) cos(q · r). (2)

The time-dependent two-photon Rabi frequency is χ(t) = �2
0/21, where

�0(t) = −µ · E(t)/~ is the on resonance Rabi frequency, µ is a matrix
element of the dipole moment operator, and E0(t) is the electric field
amplitude.

To calculate the signal, we first find the signal for a single atomic
momentum state ~k0, and then sum that signal over all the initial momen-
tum states. We therefore assume that just before the first standing-wave
pulse, the atomic state is given by

ψ(r, 0−) = eik0·r. (3)

We will now apply the pulse to get

ψ(r, 0+) = exp[iu1 cos(q · r)+ ik0 · r], (4)

where u1 =
∫ τ

0 χ(t)dt is a pulse area and τ is the duration of the pulse.
Expanding Equation (4) in a Fourier series, we have

ψ(r, 0+) =
∑

n

inJn(u1)ei(nq+k0)·r, (5)

which is a sum of plane waves with momenta differing by integer
multiples of ~q.

Each of the momentum states in Equation (5) oscillates at the frequency
~(k0 + nq)2/2M, so the wave function at time t is given by

ψ(r, t) = ei(k0·r−ωk0
t)
∑

n1

in1 Jn1(u1)ein1q·(r−v0t)e−in2
1ωqt, (6)

where ωk0 = ~k2
0/2M and ωq = ~q2/2M is the two-photon recoil frequency.

As an aside, we compute the expected signal immediately after the
first pulse. The atomic density after the pulse is given by ρ(r, t) =
ψ(r, t)ψ∗(r, t), and for a given initial velocity v0 is

ρv0(r, t) =
∑
n1 ,n′1

in1−n′1 Jn1(u1)Jn′1
(u1)ei(n1−n′1)q·(r−v0t)e−(n

2
1−n′1

2
)ωqt. (7)

In the experiment, we apply a laser field along the direction k2 and
observe a scattered field along the direction k1 (see Figure 1). This signal
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is proportional to the spatial Fourier component of the atomic density
involving eiq·r for which n1 − n′1 = 1:

ρq,v0(r, t) =
∑

n1

iJn1(u1)Jn1+1(u1)e−iq·v0te−i(2n1−1)ωqt. (8)

The expression can be summed using the identity (Watson, 1980)

iνJν [2u sin(α/2)] =
∞∑

l=−∞

eiνα/2Jl+ν(u)Jl(u)eilα, (9)

resulting in a density

ρq,v0(t) = J1[2u1 sin(ωqt)]e−iq·v0t. (10)

After summing over the initial Maxwellian velocity distribution, we find

ρq(t) = J1[2u1 sin(ωqt)]〈e−iq·v0t
〉 = J1[2u1 sin(ωqt)]e−(qσvt/2)2 , (11)

where σv is the e−1 width of the velocity distribution.
Figure 2 shows data (Cahn, 1997) and a theoretical fit based on Equa-

tion (11). In the experiment, a short standing-wave pulse made up of
counter-propagating fields with wave vectors k1 and k2 is applied. Imme-
diately after the pulse, a traveling wave is applied along k2, and the
scattered signal along k1 is detected. A physical picture of the data shown
in Figure 2 can be understood as follows. Before the pulse the atomic den-
sity is uniform. The effect of the standing-wave pulse is a momentum kick
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Figure 2 Doppler-broadened Kapitza-Dirac effect.
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to the atoms in a direction toward the minima of the potential defined by
the standing wave. Immediately after the pulse, there is no scattered sig-
nal, since the atoms have had no time to move from their initial position.
With time, the atoms move toward the potential minima, creating a gra-
ting in atomic density, which scatters the light. Since there is a spread in
initial velocities, the grating will wash out because of the fact that gratings
produced by different velocity classes will dephase from one another on
a time scale t ∼ d/σv, where σv is the initial velocity spread and d = λ/2 is
the period of the grating.

At time t = T, we apply a second pulse with area u2. The result is that
each atomic plane wave generated by the first pulse is split into a set of
plane waves, and the wave function after the second pulse is given by

ψ(r, t) = ei(k0·r−ωk0
t)
∑
n1 ,n2

in1+n2 Jn1(u1)Jn2(u2)

× e−in1q·v0Tei(n1+n2)q·[r−v0(t−T)] e−in2
1ωqTe−i(n1+n2)

2ωq(t−T). (12)

We find that the resulting density ρv0(r, t) ≡ ψ∗(r, t)ψ(r, t) is

ρq,v0(r, t) =
∑

n1 ,n′1 ,n2 ,n′2

in1+n′1+n2+n′2 Jn1(u1)Jn′1
(u1)Jn2(u2)Jn′2

(u2)

× e−i(n1−n′1)q·v0Tei[(n1+n2)−(n′1+n′2)]q·[r−v0(t−T)]

× e−i(n2
1−n′1

2
)ωqTe−i[(n1+n2)

2
−(n′1+n′2)

2]ωq(t−T). (13)

Since the experiment measures the scattering of the light field with wave-
vector k1 into wave-vector k2, we are interested only in the eiq·r Fourier
component of the atomic density. We therefore consider only the terms in
Equation (13) for which (n1 + n2)− (n′1 + n′2) = 1. In addition, we define
N̄ ≡ n′1 − n1, and find

ρq,v0(r, t) =
∑

n1 ,n′1 ,n2 ,n′2

in1+n′1+n2+n′2 Jn1(u1)Jn′1
(u1)Jn2(u2)Jn′2

(u2)

× e−iq·v0[t−(N̄+1)T]ei(n1+n′1)N̄ωqTe−i[2(n1+n2)+1]ωq(t−T). (14)

This expression, when averaged over initial velocities v0, will be equal
to zero unless the Doppler phase, φD = q · v0[t− (N̄ + 1)T] ≈ 0. Thus, for
a given value of N̄, no signal will be observed unless |t− tN̄| < 1/qσv,
where tN̄ = (N̄ + 1)T is the echo time. We now apply Equation (9) to
Equation (14) twice to get

ρq(t) = (−1)N̄+1JN̄[2u1 sin(ωq1t)]JN̄+1[2u2 sin(N̄ωqT + ωq1t)]〈e−iq·v0t
〉, (15)
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where 1t = t− techo. This equation can be simplified further by replacing
〈e−iq·v0t

〉 with e−(qσvt/2)2 , and realizing that the velocity spread of the laser-
cooled atoms is much larger than the recoil velocity, so that a signal will
be observed only when ωq1t � 1. With this approximation, we can write

ρq(t) ∼ (1t)N̄JN̄+1[2u2 sin(N̄ωqT)]e−(qσvt/2)2 , (16)

Figures 3a and b show the echo signal as a function of 1t for N̄ = 1 and
N̄ = 2, respectively. We see that for N̄ = 1, the signal is linear at the time
1t = 0, and for N̄ = 2, the signal is quadratic, which is consistent with
Equation (16).

Figure 3c and d show the amplitude of the echo signal as a function
of T, for N̄ = 1 and N̄ = 2, respectively. In this case, the signal is periodic
with a period equal to 2π/ωq ∼ 32.4 µs. We point out here that an accu-
rate measurement of this periodicity would allow one to make an accurate
determination of the recoil frequency, and hence ~/M. The precision dωq

with which one can determine the recoil frequency is given approximately
by dT/Tmax, where dT is the uncertainty in the time of the zeros of the sig-
nal and Tmax is the maximum value of T that yields a significant signal.
As will be discussed further in Section 2, a precision measurement of ωq

would allow a precise determination of the fine structure constant.
Since the development of the time-domain de Broglie wave interferom-

eter discussed earlier, a number of extensions of the basic interferometer
design have been carried out by various groups. At NYU, the theory
has been extended to an arbitrary sequence of short pulses, and data
have been taken for a three-pulse interferometer (Strekalov et al., 2002).
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function of T . In all the plots, data are represented by solid dots. The solid curves in
(a) and (b) are fits based on Equation (15). In (c) and (d) the solid curves are fits based
on Equation (16).
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At MIT, an interferometer of the type described here has been demon-
strated with a Bose–Einstein condensate (BEC) (Gupta et al., 2002). At
NIST in Gaithersburg, output coupling of BECs was also demonstrated
using a standing-wave interferometer (Hagley et al., 1999). Other pio-
neering studies at MIT and Duke University have examined the role
of atomic collisions on echo interferometers and developed techniques
for phase-space imaging using coherent transient effects (Bacon et al.,
1994; Forber et al., 1990; Thomas & Wang, 1995). Recent studies of the
kicked-rotor in a magnetically guided trap for investigations of quan-
tum dynamics and for applications to precision measurements have also
used internal-state interferometers of this type (Tonyushkin & Prentiss,
2010; Tonyushkin et al., 2009a; Wu et al., 2005, 2009). At York University,
the focus has been on precision measurements of atomic recoil (Beattie
et al., 2009b). A complete understanding of mechanisms affecting the
two-pulse interferometer was developed on the basis of analytical cal-
culations and numerical simulations (Barrett et al., 2010; Cahn, 1997;
Dubetsky, 1997) including effects such as spontaneous emission, mag-
netic sublevels, and standing-wave pulse parameters (rise time, duration,
detuning, intensity). Systematic effects on the recoil frequency (angle
between excitation beams, sample density, and index of refraction) have
also been investigated. A multipulse interferometer was also developed,
which has significant advantages for precision measurements (Beattie
et al., 2009a). The theoretical description of this interferometer was devel-
oped using the wave function evolution approach discussed in Strekalov
et al. (2002) and, separately, using the coherence function approach shown
in Mandel (1979). The coherence function approach resulted in an under-
standing of the complete recovery of contrast in the interferometer using
pulsed standing waves and the partial recovery of contrast using pulsed
traveling waves and continuous wave light. The results of these studies
of traveling-wave excitation were similar to the results of atomic beam
experiments carried out by several pioneering groups (Chapman et al.,
1995; Kokorowski et al., 2001; Pfau et al., 1994; Uys et al., 2005).

The outline of this chapter is as follows. Section 2 provides a physi-
cal description of the two-pulse interferometer described earlier and its
application for precision measurements. It also presents an analysis of the
effects of spontaneous emission and magnetic sublevels on the interfer-
ometer signal. The sensitivity of the interferometer to magnetic gradients
and gravitational acceleration, g, is also discussed. This is followed by a
description of the multipulse interferometer and a review of recent exper-
imental results at the transit-time limit. Section 3 presents a modification
to the techniques outlined earlier, in that instead of the first pulse, the
atoms are cooled in an optical lattice potential, and at time t = 0, sud-
denly released. At time T a pulse of the optical lattice is applied and, at
times close to t = (N̄ + 1)T, an echo is observed by the scattering of a
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traveling wave. In addition, Section 3 discusses the behavior of the sys-
tem if the applied pulse is of very long duration, in extreme violation of
the Raman–Nath condition. Section 4 discusses frequency-domain tech-
niques for measurements of atomic recoil and rotation. Section 5 includes
a discussion of techniques for measurements of g using the two-pulse
interferometer and presents recent results that show the potential for
high-precision measurements. Section 6 presents techniques for measur-
ing magnetic interactions using an internal state labeled interferometer
that utilizes magnetic sublevels in a single ground state. Section 7 shows
the suitability of the traditional two-pulse photon echo technique for
precision measurements of atomic lifetimes. The article concludes with
Section 8, which is a review of recent studies of superradiant emissions in
laser-cooled atoms.

2. TIME-DOMAIN ATOM INTERFEROMETER
EXPERIMENTS—ATOMIC RECOIL

2.1 Introduction

During the last 20 years, the field of precision measurements has focused
on new determinations of fundamental constants. In particular, there has
been renewed emphasis on independent measurements of the atomic fine
structure constant, α, to test quantum electrodynamics (QED). Experi-
ments based on the electron g-factor (Hanneke et al., 2008) and helium
fine structure (Smiciklas & Shiner, 2010) rely on QED to define α. In con-
trast, precision measurements of α using atom interferometers (AIs) have
relied on the following relationship (Taylor, 1994)

α2
=

(
2R∞

c

)(
mp

me

)(
M
me

)(
h
M

)
, (17)

where R∞ is the Rydberg constant, c is the speed of light, mp (me) is the
mass of the proton (electron), h is Planck’s constant, and M is the mass of
the test atom. Since R∞ and the mass ratios have been measured with a
precision greater than 0.1 parts per billion (ppb), AIs are well suited for
precision measurements of α. Importantly, an AI-based measurement of
α does not rely on QED and the precision in determining h/M is better
than the precision with which h and M can be measured independently
(Taylor, 1994).

AIs involving Raman transitions between hyperfine ground states have
exploited the properties of laser-cooled atoms for a variety of experiments
related to precision measurements and inertial sensing (Chiow et al., 2009;
Dubetsky & Kasevich, 2006; Gupta et al., 2002; Lamporesi et al., 2008;
McGuirk et al., 2002; Müller et al., 2010; Peters et al., 1999; Weiss et al.,
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1993; Wicht et al., 2002). Recent AI-based work using Bloch oscillations in
cold optical lattices (Cadoret et al., 2008) have also produced competitive
measurements of α.

In this section we review, two time-domain echo-type AI techniques
(Barrett et al., 2010; Beattie et al., 2009a,b, 2008; Cahn et al., 1997)
that allow of precise measurements of the atomic recoil frequency, ωq =

~q2/2M, where ~q is the two-photon momentum transfer from counter-
propagating laser fields. The different techniques for extracting ωq are
introduced briefly, followed by a more detailed discussion of signal
formation.

2.1.1 Physical Description of the AI

The AI functions on the basis of phase modulation of the atomic wave
function due to the interaction with standing-wave (sw) pulses. Although
this phase modulation is directly connected to the recoil energy, the func-
tional form of the signal has a complicated dependence on a number of
mechanisms that we explore in the following subsections. These include
the dynamic population of magnetic sublevels, phase shifts due to sponta-
neous and stimulated processes, excitation of multiple momentum states,
and the spatial profile of the excitation beams. Recent work has success-
fully modeled the signal shape on the basis of analytical calculations as
well as numerical simulations (Barrett et al., 2010; Beattie et al., 2008).

The AI uses a cold gas of rubidium atoms. The sample is excited by
sw pulses that satisfy the Raman–Nath criterion and are far-detuned from
the excited state. Each such pulse results in the diffraction of atoms into
a superposition of momentum states separated by ~q = 2~k (as shown
in Figure 4a), where k = 2π/λ is the wavenumber of the traveling wave
components of the sw. Each pulse transfers momenta in integer multi-
ples of ~q, due to scattering of radiation between the two traveling-wave
components of the sw field. After excitation, the sample evolves into a
superposition of momentum states corresponding to the same internal
ground state—which can have several magnetic sublevels.

The recoil phase of momentum state
∣∣p = n~q

〉
scales as n2ωqt, where n

is an integer denoting the number of two-photon transitions induced by
the sw pulse. The Doppler phase of these states evolves as nqv0t, where v0

is the initial atomic velocity. The modulation of the wave function occurs
on a timescale τq = π/ωq (∼32 µs for 85Rb). This occurs because atoms dif-
fering in velocity by the recoil velocity, vq = ~q/M, are displaced relative
to one another by one grating period (λ/2) in a time τq. This time scale
should be compared to the coherence time, τcoh∼2/qσv, of the atomic den-
sity grating induced by the sw potential. Here, σv =

√
2kBT /M is the e−1

width of the velocity distribution and T is the temperature of the sam-
ple. This is the time scale on which the temporal modulation of the wave
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Figure 4 (a) Recoil diagram for the two-pulse AI. Center-of-mass momentum states
are shown as dots. Standing-wave pulses are applied at t = 0 and t = T to diffract the
momentum states of the atom into multiples of the two-photon recoil momentum
2~k . Only the zeroth-order and the ± first-order diffractions from each sw pulse are
drawn for simplicity. Two pairs of interfering momentum states are shown as solid
lines. (b) Pulse timing diagram for the experiment. After each sw pulse, a modulation
in atom density forms and then decays in a time τcoh because of Doppler dephasing.
At time t = 2T , the grating echo forms as a result of the interference between
different momentum states. A traveling-wave read-out pulse coherently scatters light
from the grating at this time. The intensity of this light is detected as the signal.

function decoheres because of Doppler dephasing from the finite velocity
distribution of the sample.

For BEC conditions with T ∼ 10−8 K, the dephasing time can be much
longer than the modulation period of the wave function. In this case, the
recoil modulation can be observed with a single sw pulse, as discussed in
detail in Section 2.3.

The theoretical expression for the recoil signal in the two-pulse regime
was originally derived in Cahn et al. (1997). The treatment in (Beattie et al.,
2008) addressed the role of spontaneous emission (SE) on the recoil sig-
nal. A comprehensive study of effects on the two-pulse AI related to both
stimulated and spontaneous processes between magnetic sublevels in the
ground and excited states was carried out using numerical simulations in
Barrett et al. (2010). An analytical model of the two-pulse AI including
both SE and magnetic sublevels was also derived in this work. We discuss
these issues in Section 2.4.

An alternative technique for measuring ωq, described in Section 2.5,
involves excitation with a third sw pulse applied at t = T + δT. One then
observes the influence of this pulse on the echo at t = 2T. Figure 5 shows
the timing diagrams for both the two-pulse and three-pulse AI techniques.
In the absence of SE, the contrast at t = 2T can be recovered when δT is
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Figure 5 Recoil diagram for the two-pulse AI (a) and the three-pulse AI (b). The
grating contrast at t = 2T is measured by varying the pulse separation, T , in the
two-pulse AI. In the case of the three-pulse AI, T is held fixed and the time of the third
pulse, δT , is varied. The contrast exhibits a periodic revival when δT is an integer
multiple of the recoil period, τq.

an integer multiple of τq, due to constructive interference of phase-shifted
momentum states produced by the third pulse, as shown in Figure 5b.
The basic signal shape produced by this AI can be described by a coher-
ence function (Beattie et al., 2009b; Mandel, 1979)—a Fourier transform
of the atomic momentum distribution produced by a sw pulse. A more
detailed quantum mechanical calculation of the echo formation (Beattie
et al., 2009a; Strekalov et al., 2002) predicts certain scaling laws for the
fringe width as a function of the area of the third pulse which can be
exploited to improve the precision of a measurement of ωq.

In contrast, if the third pulse is a traveling wave, the quasi-periodic
contrast cannot be fully recovered because of decoherence from SE. The
contrast as a function of δT in this case can also be described using
a coherence function, as in atomic beam experiments (Chapman et al.,
1995; Kokorowski et al., 2001; Pfau et al., 1994; Uys et al., 2005) and in
time-domain experiments in cold atoms (Beattie et al., 2009a).

2.2 Experimental Work

Although the timescale and precision associated with the recoil experi-
ment should be limited only by the transit time of the atoms through the
region of interaction, in practice it is necessary to eliminate the effects of
decoherence due to atomic collisions and background light. Magnetic field
gradients also cause amplitude oscillations that must be eliminated (Weel
et al., 2006). A plot of the signal decay as a function of the pulse separa-
tion, T, is shown in shown in Figure 6a. The decrease in signal with T is
mainly due to residual magnetic field gradients and the loss of atoms from
the region of interaction defined by the excitation beams.

An interesting aspect of using the echo technique is that the Doppler
phases accumulated by momentum states cancel at the echo times. As a
result, the experiment does not rely on velocity selection. Although veloc-
ity selection is not required for the grating echo AI, sub-Doppler cooling
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Figure 6 (a) Signal decay of the two-pulse AI as a function of pulse separation, T .
The first pulse is held fixed while the second pulse and read-out pulse are moved out
in integer units of the recoil period, τq, and twice the recoil period, respectively. The
loss of signal is primarily due to atoms leaving the region of interaction. (b)
Experimental setup used for the two-pulse recoil experiment and (c) for the
three-pulse experiment.

of the sample is necessary to extend the transit time, which is the primary
limitation for the timescale of the experiment.

Experiments involving the two-pulse technique (Beattie et al., 2008)
were carried out in a stainless steel vacuum chamber. The light used for
atom trapping and atom interferometry is derived from a Ti:Sapphire ring
laser and from a semiconductor tapered amplifier seeded by light from
the Ti:Sapphire laser. Approximately 108 85Rb atoms are loaded into a
magneto-optical trap (MOT) in ∼200 ms. The temperature of the sample
was typically ∼50 µK (Vorozcovs et al., 2005).

The excitation pulses for the AI are derived from a chain of acousto-
optic modulators (AOMs) controlled by transistor-transistor logic (TTL)
switches that ensure an extinction ratio for the radio frequency (RF) power
of ∼40 dB. Pulsing a chain of AOMs ensures that excitation and read-
out pulses have on/off contrast greater than 106 : 1, thereby minimizing
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decoherence due to background light. The last AOM in this chain operates
at 250 MHz and is shown in Figure 6b. The diffracted beam from this
AOM serves as the excitation beam. A beam diameter of ∼0.5 cm was
used, which is comparable to the initial cloud diameter of ∼0.6 cm. The
mirror shown at the top of Figure 6c is used to retro-reflect the traveling-
wave pulses from the AOM and produce the sw excitation pulses used
for the AI. A shutter with a closing time of ∼600 µs is used to block the
retro-reflection at the time of the read-out pulse.

The grating contrast is detected using a read-out pulse that has the
same polarization and detuning as the excitation pulses. The scattered
light from the sample due to the read-out pulse is detected using a gated
photomultiplier tube (PMT). Owing to jitter in the shutter closing time
of ∼200 µs, the smallest pulse separation, T, for which the echo can be
recorded using this technique is∼1 ms. The grating contrast is determined
by integrating the echo envelope over the signal duration of ∼2 µs.

For recent experiments with the three-pulse technique, a glass vacuum
system was used. Here, the trap loads ∼109 atoms in ∼300 ms. Both the
MOT laser beams and the magnetic field gradient are switched off prior
to the AI experiment. Three pairs of coils, one pair along each direction,
are used to cancel residual magnetic fields and field gradients. These coils
remain on continuously. Under these conditions, the magnetic field at the
time of the echo experiment is canceled at the level of ∼1 mG over the
volume of the trap. The AI excitation pulses are derived from two off-
resonant, circularly polarized, traveling wave beams. They are overlapped
at the location of the trap to form a sw along the vertical direction. The AI
beams have a Gaussian intensity profile and are collimated to a diameter
of ∼1 cm. Two separate AOMs operating at 250 MHz were used to gener-
ate counter-propagating traveling-wave pulses as shown in Figure 6c. This
arrangement allowed the shutter to be eliminated so that the time separa-
tion between the standing-wave excitation pulses, T, could be reduced to
a few microseconds.

2.3 One-Pulse Atom Interferometer

In order to fully understand the origin of the signal used in the experi-
ments, a quantum theory of matter wave interference is essential. Such
a theory is governed by the quantization of the atomic center-of-mass
motion and is analogous to the diffraction of light in classical optics.

The simplest signal is presented first, namely the recoil signal produced
by one sw pulse. In order to observe interference between momentum
states after one pulse, the velocity distribution of the sample must be very
narrow (σv/vq � 1) such that the coherence of the sample is preserved
much longer than the onset time of recoil modulation (τq). The calcula-
tion of the signal is then carried out in two stages. First, the Schrödinger
equation is solved for the ground-state amplitude of the atomic wave
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function using the two-level Hamiltonian for a sw laser field. The Hamil-
tonian assumes that the sw pulse is short (Raman–Nath regime) such
that the motion of the atoms along the axis of the sw can be neglected
during the interaction. It also assumes that the pulse is far off-resonance
(|1| � �0, γ ) such that the excited state is not significantly populated.
This leads to Kapitza-Dirac diffraction of the atomic wave function into
a superposition of momentum states. Here, 1 ≡ ω − ω0 is the detun-
ing of the laser frequency, ω, from the atomic resonance frequency, ω0,
�0 ≡ µegE0/~ is the Rabi frequency, µeg is a dipole matrix element, E0 is
the electric-field amplitude of each traveling-wave component of the sw,
and γ = 0/2, where 0 is the spontaneous emission rate.

In the second stage of the calculation, after the pulse has turned off,
the atom is allowed to evolve in free space for a time t, which results in a
modification of the phase of the ground-state amplitude. In an experiment
involving a BEC, a traveling-wave read-out pulse with wavelength λ can
be applied to the atomic sample and the back-scattered electric field can
be detected as the signal (Gupta et al., 2002). The amplitude of the scat-
tered field is proportional to the λ/2-periodic component of the atomic
density modulation (the 2k = q-Fourier harmonic) produced by the sw
interaction. For a long read-out pulse, the scattered signal would exhibit
temporal modulation proportional to the contrast of the atomic density
distribution.

For a two-level atom, the Hamiltonian in the field-interaction represen-
tation is (Berman & Malinovsky, 2011)

H = ~
(
−1− iγ �(r)
�(r) 0

)
, (18)

where �(r) = �0 cos(k · r) for a sw laser field. The energy is defined to
be zero for the ground state and −~1 for the excited state. The −i~γ
term is a phenomenological constant added to account for SE during
the interaction, which gives rise to amplitude decay of the excited state.
For the moment, the effects due to SE are ignored by setting γ = 0 in
Equation (18). These effects are discussed in a later section.

The ground-state density produced after the interaction with one sw
pulse is

ρ(1)g (r, t) =
1
V

∞∑
ν=−∞

χ (1)
ν
(t)e−iνq·r, (19a)

χ (1)
ν
(t) = iνeiνq·v0(t−T1)

∑
n

Jn(u1)Jn+ν(u1)eiν(2n+ν)ωq(t−T1). (19b)

Here, χ (1)
ν
(t) is the amplitude of the νq-Fourier harmonic of the density

distribution and the superscript (1) denotes that this is valid for one sw
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pulse. The field scattered from the density grating is proportional to χ (1)1 (t)
and can be shown to be (Barrett et al., 2010)

E(1)(t) ∝ −J1

[
2u1 sinωq(t− T1)

]
, (20)

where T1 is the onset time of the pulse, ωq is the recoil frequency and u1 is
the pulse area, which, for a pulse duration of τ1, is given by

u1 =
�2

0

21
τ1. (21)

Figure 7 shows the atomic density (obtained using Equation [19a]) and
corresponding scattered field amplitude (obtained using Equation [20])
for two different pulse areas.
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Figure 7 Density distribution, ρ(1)g (z, t), and corresponding back-scattered electric
field amplitude, E(1)(t), for an atomic sample after the interaction with a weak sw
pulse (a, c) and a strong sw pulse (b, d). In plots (a) and (b), z is the distance along the
sw field. Dark portions correspond to low density while light portions correspond to
high density. ρ(1)g (z, t) shows spatial modulation that is periodic at integer multiples of
λ/2, and shows temporal modulation at integer multiples of 2ωq as the pulse area
increases. Equation (19a) was used to produce plots (a) and (b) with pulse area
u1 = 0.5 and 1.5, respectively. In plots (c) and (d), Equation (20) was used with the
same respective pulse areas. The zeroes in the contrast of the density modulation
correspond to the zeroes in E(1)(t).
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The recoil signal in the one-pulse regime is the intensity of the scat-
tered field, which is proportional to the square of Equation (20): s(1)(t) ∝
|E(1)(t)|2.

2.4 Two-Pulse Atom Interferometer

Here, the two-pulse atom interferometer is discussed, along with the
qualitatively new features that arise in this case. When the velocity disper-
sion of the sample is large, that is, σv/vq > 1, the grating in Equation (19a)
is washed out. By subjecting the sample to a second sw pulse, the grating
is reformed at a later time. The grating echoes occur only at times where
the Doppler phase cancels, (as shown in Figure 8)

t(2)echo = T2 + N̄(T2 − T1) = (N̄ + 1)T, (22)

for pulse onset times of T1 = 0 and T2 = T.
The first echo time where all momentum states interfere is t(2)echo = 2T,

corresponding to N̄ = 1, which will be the focus of most of this work. The
scattered field amplitude in the vicinity of the N̄th- order echo time is

E(2)
N̄ (1t; T) ∝ (−1)N̄+1e−(1t/τcoh)

2
JN̄

(
2u1 sin(ωq1t)

)
× JN̄+1

(
2u2 sin[ωq(1t+ N̄T)]

)
,

(23)
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Figure 8 Two-pulse recoil diagram: Doppler phase as a function of time for
momentum states

∣∣n~q
〉
. Only n = −3, . . . , 3 are shown for simplicity. The first sw

pulse (SW1) is applied at t = 0, while the second (SW2) is applied at t = T . Echo times
(given by Equation [22]) are marked by circles. The number of crossings at each echo
time is proportional to the contrast of the λ/2-periodic density grating formed at those
times.
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where 1t = t− t(2)echo, with t(2)echo given by Equation (22). From this expres-
sion, it is clear that the scattered field amplitude is periodic at multiples of
the recoil frequency as a function of the pulse separation T. It is interesting
to note that, for the N̄th-order echo, the scattered field amplitude changes
at frequency N̄ωq, which is advantageous for a precision measurement of
ωq. However, the maximum contrast of the N̄th-order echo is reduced by a
factor of ∼JN̄−1(2u1)/JN̄(2u1) ∼ (2u1)

−1 relative to the (N̄ − 1)th order echo,
which manifests as a loss in the signal to noise ratio in the experiment.

In the experiment, the measurable quantity is the relative contrast of the
atomic density grating in the vicinity of the echo. This quantity—defined
as the recoil signal—is obtained by integrating the scattered field intensity
over the duration of the echo, which can be written as

s(2)N̄ (T) ∝ J2
N̄+1

(
2u2 sin(N̄ωqT)

)
, (24)

where the superscript (2) denotes the number of pulses used to produce
the signal and the subscript N̄ denotes the order of the echo.

2.4.1 Effects due to Spontaneous Emission

Spontaneous emission during the sw interaction strongly affects the recoil
signal (Beattie et al., 2008). Taking it into account, the expression for the
scattered field in the case of both one and two pulses is modified as
follows:

E(1)(t) ∝ −J1

(
2u1

√
sin(φ(1)1 + θ) sin(φ(1)1 − θ)

)(
sin(φ(1)1 − θ)

sin(φ(1)1 + θ)

)1/2

, (25a)

E(2)
N̄ (1t; T) ∝ (−1)N̄+1e−(1t/τcoh)

2

× JN̄

(
2u1

√
sin(φ(2)1 + θ) sin(φ(2)1 − θ)

)
× JN̄+1

(
2u2

√
sin(φ(2)2 + θ) sin(φ(2)2 − θ)

)

×

(
sin(φ(2)1 + θ)

sin(φ(2)1 − θ)

)N̄/2 (
sin(φ(2)2 − θ)

sin(φ(2)2 + θ)

)(N̄+1)/2

.

(25b)

Here, the recoil phases for each pulse are defined as

φ
(1)
1 = ωq(t− T1), (26a)

φ
(2)
1 = ωq[t− T2 − N̄(T2 − T1)] = ωq1t, (26b)

φ
(2)
2 = ωq(t− T2) = ωq[1t+ N̄(T2 − T1)], (26c)
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where Tj is the onset time of pulse j, uj is the magnitude of the complex
pulse area, 2j = ujeiθ , given by

uj =
�2

0τj

21

[
1+

(
0

21

)2
]−1/2

, (27)

and θ is a phase that represents the degree to which SE contributes to the
signal:

θ = tan−1

(
−
0

21

)
. (28)

There are two main features that are observed when SE is present.
First, within a single period, the signal develops an asymmetry about
the zeroes. Second, there is a temporal shift of the zeroes toward earlier
times relative to the zeroes expected without SE. Both of these features
are best demonstrated when the pulse area is large—causing the double-
peak structure within each period of the recoil signal. This is illustrated in
Figure 9a for the one-pulse case, and has been observed experimentally in
the two-pulse case as shown in Figure 9b.

In the absence of SE the signal develops multiple peaks within each
period for large pulse areas (compare Figure 7c to Figure 7d). This
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Figure 9 (a) Comparison of recoil curves (scattered field intensity as a function of
time after the sw pulse) predicted by the one-pulse theory (square of Equation [25a])
with and without SE. The black curve corresponds to a SE-free system
(0 = 0→ θ = 0), while the gray curve corresponds to a system where SE is present
(0 = 0N → θ = −0.133 rad). The solid vertical line shows the first zero in the signal
after t = 0 in the absence of SE, while the dashed vertical line shows the zeroes shift
by a temporal amount δt = θ/ωq in the presence of SE. Pulse parameters: 1 = 7.50N;
�0 = 1.50N; τ1 = 250 ns; pulse area u1 ∼ 1.43. (b) Data from the two-pulse recoil
experiment fitted to the square of Equation (25b)—solid line. The data exhibit a
similar asymmetric shape to that predicted by the theory. Pulse parameters: detuning
1 ∼ 50 MHz; intensity I ∼ 50 mW/cm2; pulse durations τ1 = 300 ns, τ2 = 70 ns; circular
polarization.
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structure is due to the interference of higher order momentum states
which become more populated as the pulse area increases. In the absence
of any phase shifts of the individual harmonics, the shape of the recoil
signal (s(1)(t) = |E(1)(t)|2) is symmetric (black curve in Figure 9a).

On the other hand, when SE is present the phases of the individual
harmonics comprising the signal are shifted by a phase φ(1)n ≈ |n|θ − nπ/2
(Barrett et al., 2010), as a result of the decay of the excited state into the
ground state. Here, n is an integer denoting the momentum states that
are interfering (

〈
n~q

∣∣ (n+ 1)~q
〉
) to produce each harmonic of the sig-

nal. Since the signal is a coherent sum over all the harmonics, it exhibits
more constructive interference on one side of its zeroes than the other,
giving rise to an asymmetry in the peak amplitude within each recoil
period. It also results in an overall temporal shift of the waveform equal to
δt = θ/ωq.

2.4.2 Effects due to Magnetic Sublevels

In the experiment 85Rb is used, which is a multilevel atom. If only the
F = 3→ F′ = 4 transition is considered, there are 2F+ 1 = 7 ground-state
magnetic sublevels and nine excited state sublevels. These energetically
degenerate sublevels have a significant effect on the response of the AI.

The coupling strength between states
∣∣g〉 = ∣∣ng Jg mg

〉
and |e〉 = |ne Je me〉

is determined by the dipole matrix element

µeg = −e 〈e | ε̂qL · r
∣∣g〉 = −e〈ne Je‖r‖ng Jg〉C

Jg 1 Je
mg qL me , (29)

where ng, ne are the principal quantum numbers, Jg, Je are the total angu-
lar momenta, and mg, me are the magnetic sublevels of the ground and
excited states, respectively. In our case, Jg = F = 3 and Je = F′ = 4. The
unit vector ε̂qL represents the polarization of the laser field. Linear and
circular polarization states are denoted by qL. Here, qL = 0 for linearly
polarized light along the quantization axis, ẑ (k ‖ ẑ), and qL = ±1 for σ±

polarizations in the xy-plane (k ⊥ ẑ). The factor 〈ne Je‖r‖ng Jg〉 in Equa-
tion (29) is the reduced matrix element associated with the radial part
of the wave functions—the magnitude of which is unimportant for this
treatment and will be absorbed into the Rabi frequency, �0 = µegE0/~.
The factor C

Jg 1 Je
mg qL me is the Clebsch-Gordan coefficient, which describes how

strongly two states are coupled by the photon and depends on the partic-
ular transition. We are concerned only with electric dipole transitions that
obey the selection rules: Je = Jg + 1 and me = mg + qL.

From Equation (29), it is apparent that each degenerate m-level inter-
acts with a sw pulse (of a given polarization) with a different coupling
strength—which is proportional to the Rabi frequency for each transi-
tion: C

Jg 1 Je
mg qL me �0. In the experiment, this differential coupling causes the
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population of the m-levels to become unbalanced after the interaction with
the sw pulse (optical pumping). The degree of the imbalance is deter-
mined by �0, 1, and the pulse durations. In the analytical treatment that
follows, optical pumping is not taken into account. We assume that the
population of each m-level remains constant during the sw pulses. How-
ever, optical pumping effects can be taken into account using numerical
simulations of the AI, which will be discussed later.

The area of a given sw pulse, denoted by index j, is given by

u
(mg)

j =
�2

0τj

21

[
1+

(
0

21

)2
]−1/2 (

C
Jg 1 Je
mg qL me

)2

. (30)

For the first-order echo of the two-pulse recoil signal (N̄ = 1), the total
scattered field amplitude is a sum over the fields scattered by each state∣∣Jg mg

〉
(Barrett et al., 2010)

E(2)
1 (1t; T) ∝ e−(1t/τcoh)

2

(
sin(φ(2)1 + θ)

sin(φ(2)1 − θ)

)1/2 (
sin(φ(2)2 − θ)

sin(φ(2)2 + θ)

)

×

∑
mg

(
C

Jg 1 Je
mg qL me

)2

J1

(
2u

(mg)

1

√
sin(φ(2)1 + θ) sin(φ(2)1 − θ)

)

× J2

(
2u

(mg)

2

√
sin(φ(2)2 + θ) sin(φ(2)2 − θ)

)
,

(31)

where the φ(2)j are recoil phases given by Eqs. (26b) and (26c). The extra

factor of
(
C

Jg 1 Je
mg qL me

)2
in Eq. (31) arises because of the coupling of states∣∣Jg mg

〉
and |Je me〉 by the traveling-wave read-out pulse (assuming that the

scattered field has the same polarization as the read-out pulse).
The form of Equation (31) allows for interference between scattered

fields from each m-level. This additional interference from magnetic sub-
levels strongly affects the shape of the recoil signal. Figure 10a shows a
comparison of two-pulse recoil signals predicted by the simple two-level
theory (square of Equation [25b]) and the theory including multiple sub-
levels (square of Equation [31]). The two-level theory predicts extra zeroes
in the signal shape that are not observed experimentally. In contrast, for
the same set of pulse parameters, the multilevel theory correctly predicts
that these extra zeroes should not be present. Their absence is due to the
interference of back-scattered light from each magnetic sublevel.

Indeed, as Figure 10b shows, data from the two-pulse recoil experi-
ment strongly support the multilevel model, described by Equation (31).
In particular, the multilevel theory successfully models the asymmetry
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Figure 10 (a) Two-pulse recoil curves predicted by the two-level theory (square of
Equation [25b]—gray curve) and the theory including magnetic sublevels (square of
Equation [31]—black curve). The m-level populations were assumed to be equally
distributed among the seven levels of the Jg = 3 ground state of 85Rb. Pulse
parameters: 1 = 100N; �0 = 2.50N; 0 = 0N, τ2 = 250 ns. (b) Data from the two-pulse
recoil experiment. Data are fitted to the two-level expression (square of
Equation [25b]—dashed line), and the multilevel expression (square of
Equation [31]—solid line). Pulse parameters: detuning 1 ∼ 50 MHz; intensity I ∼ 50
mW/cm2; polarization state |qL| = 1; first pulse durations τ1 = 300 ns, τ2 = 98 ns.

and the broad valleys between zeroes that occur as the area of the sec-
ond pulse is increased. Fits using the multilevel theory show a factor of
∼10 improvement in the χ 2/dof compared to that of the two-level theory,
which corresponds to a factor of ∼3 improvement in the relative uncer-
tainty of the recoil frequency. Thus, the multilevel model is necessary for
precision measurements of ωq using the two-pulse technique.

2.4.3 Spatial Profile

Another complication in modeling the AI is that magnetic sublevels and
the spatial intensity profile of the excitation beams can be shown to pro-
duce similar effects on the signal shape. For the data presented earlier,
the beam diameter (∼1 cm) was larger than the diameter of the atomic
cloud (∼0.6 cm). Under these conditions, magnetic sublevels played the
dominant role on the response of the AI. However, when the beam
diameter is comparable to the size of the atomic cloud, these effects are
indistinguishable.

Figure 11 shows a typical measurement of ωq using the two-pulse tech-
nique. The echo intensity is recorded over two widely separated periods.
The fit to the data shown in both plots is based on a phenomenological
treatment including the effects due to SE and the spatial profile of exci-
tation beams (Beattie et al., 2008) and gives an error for ωq of ∼3 parts
per million (ppm). This is a factor of ∼3 more precise than the fits using
models without accounting for the spatial profile.
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Figure 11 Grating contrast as a function of T for the two-pulse experiment shown at
(a) T ∼ 1 ms and (b) T ∼ 9 ms. Part (a) shows three fits to the data, one based on the
theory of echo formation ignoring effects due to SE (labeled “No SE”), one including
SE (labeled “With SE”), and one based on a phenomenological treatment including
both SE and the spatial profile of excitation beams (labeled “SE and SP”). Part (b)
shows only the fit based on the phenomenological model. This fit gave a single
measurement of ωq precise to ∼3 ppm.

In either case of small or large beam diameter, the importance of includ-
ing both SE and magnetic sublevels/spatial profile in the model of the
signal is quite significant for precision measurements.

2.4.4 Effects due to B-Field Gradients and Gravity

The effect of a constant acceleration on the interferometer manifests itself
as a phase shift of the atomic grating, and therefore of the back-scattered
electric field. Here, the modification of the scattered field amplitude due
a constant force is presented. Two physical examples are considered: the
force due to gravity and the force on the atom due to the presence of a uni-
form magnetic field gradient (Weel et al., 2006). Both of these forces can
be written in the form Û(z) = −M̂z, where M̂ is an operator that com-
mutes with both the position (z) and momentum (p) operators, and acts
on the basis states |F mF〉. In the case of gravity, M̂ = F Î, with F = −Mg
and identity matrix Î since gravity acts equally on all magnetic sublevels.
In the case of a magnetic field gradient, the potential is

Û(z) = −µ · B(z) = −gFµBG
F̂z

~
z, (32)

where gF is the Landé g-factor, µB is the Bohr magneton, and B(z) = Gz,
where G = ∂B/∂z is a uniform magnetic field gradient along z, and F̂z is
the projection operator for total angular momentum, F. In this case, M̂ =
F F̂z/~ and F = gFµBG.
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The total scattered field from all magnetic sublevels in the presence of
a gradient G can be shown to be

E(2)
N̄, G(1t; T) = E(2)

N̄ (1t; T)
∑

mF

|αmF |
2eimFφ

(2)
G , (33)

where E(2)
N̄ is given by Equation (23) and the phase due to the gradient is

φ
(2)
G (1t; T) =

qgFµBG
2M

[
N̄(N̄ + 1)T2

+ 2(N̄ + 1)1tT +1t2
]
. (34)

From Equation (33), it is clear that the scattered field amplitude from
state |F mF〉 exhibits phase modulation as a function of the pulse spacing,
T, at a frequency mFω

(2)
G (T) due to the presence of the gradient, where

ω
(2)
G (T) = ∂φ

(2)
G /∂T. This frequency depends linearly on the value of T

(since the phase scales as T2) and the magnetic quantum number, mF. For
an arbitrary set of m-level populations, {|αmF |

2
}, the total scattered field

contains all the allowed harmonics of frequency ω(2)G (T). If more than one
sublevel is populated, this effect can be detected in the signal intensity
(|E(2)

N̄, G(t)|
2), since interference between differentially oscillating sublevels

would manifest as an amplitude modulation. However, if the system
is optically pumping into a single sublevel, the modulation only affects
the phase of the electric field—which cannot be observed using intensity
detection. Instead, one can use a balanced heterodyne detector to measure
the in-phase and in-quadrature components of the electric field amplitude
to obtain the phase.

Taking into account the phase evolution of the wave function due to
gravity, the scattered field can be shown to be

E(2)
N̄, g(1t; T) = E(2)

N̄ (1t; T)eiφ(2)g , (35)

where φ(2)g (T) ∼ −qgN̄(N̄ + 1)T2/2. Since gravity acts equally on all states,
its effect is a modification of the phase of the density grating. This phase
is then imprinted on the electric field scattered by the grating from the
read-out pulse and cannot be detected from the intensity of the scattered
light.

If the system is optically pumped into a single magnetic sublevel, other
than mF = 0, then a magnetic field gradient will affect only the phase of
the scattered electric field in the same manner as gravity. Since both forces
affect the phase of the scattered field in a similar manner, some care must
be taken to isolate one effect or the other in an experiment. By perform-
ing the echo experiment in the horizontal direction, for example, one can
eliminate the effect of gravity and isolate the effect of a magnetic field gra-
dient. Similarly, by performing the experiment along the vertical direction
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and canceling field gradients along all other directions, or by optically
pumping into the mF = 0 state, it is possible to eliminate the effect of
B-field gradients in order to isolate the acceleration due to gravity.

The scale of these two physical mechanisms is also quite different.
The force due to gravity on a 85Rb atom is Fg ∼ 1.4× 10−24 N. To achieve
this same force with a B-field gradient, an atom in the |F = 3, mF = 3〉
state would have to be exposed to a gradient of G ∼ 15 Gauss/cm. In
the lab, gradients as small as G ∼ 10−5 Gauss/cm can be applied to the
atoms. Experimental timescales of 2T ∼ 60 ms have been achieved in a
glass vacuum chamber with gradients at this level. At a pulse separation
of T ∼ 30 ms, amplitude modulation of the grating contrast due to a gra-
dient of this size oscillates at a frequency of mFω

(2)
G (T) ∼ 1 Hz for mF = 3

and N̄ = 1.
Figure 12 shows the recoil signal decay in the presence of a magnetic

field gradient. The signal is modulated by the phase, mFφG(T), for each
sublevel |F mF〉. By fitting the data to a model based on Equation (33), we
measure the gradient to be G = (23.9± 0.09)× 10−3 Gauss/cm, which is
within a factor of two of the estimate of the applied gradient: G ∼ 0.05
Gauss/cm.

Related studies of the effects of magnetic gradients involving guided
atom interferometers are described in Wu et al. (2005).
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Figure 12 Data showing the effect of a magnetic field gradient on the recoil signal
decay. Here, a gradient is applied to the atomic sample during the time of the
experiment. The pulse separation, T , is varied in integer multiples of the recoil
period, τq, so as to avoid any modulation due to recoil. The echo intensity is recorded
at the first-order echo time, t(1)echo = 2T . Error bars represent the standard deviation of
a set of three measurements of the echo intensity at the same T . The signal is
modulated by the phase, mFφG(T ), for each sublevel |F mF〉. The data are fitted to the
function: A[α2

0 + (α1 cosωGT + α2 cos 2ωGT + α3 cos 3ωGT )2]e−T /τ , shown as the solid
line. From the fit we extract the gradient to be G = (23.86± 0.09)× 10−3 Gauss/cm.
The m-level populations are also measured to ∼1% as |αmF |

2
= {0.51, 0.46, 0.01, 0.02},

from mF = 0 on the left to mF = 3 on the right.
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2.5 Multi-pulse atom interferometer

For the purposes of a precision measurement of ωq, the two-pulse tech-
nique has one significant drawback: the signal exhibits a complicated,
asymmetric shape as a function of T due to the different effects discussed
earlier. A different technique for measuring ωq with this interferometer—
which makes use of multiple sw pulses—eliminates this difficulty.

It is relatively straightforward to generalize the expression of the
scattered field for two sw pulses (Equation [23]) to N-pulses by apply-
ing a succession of phase gratings to the ground-state wave function
(Beattie et al., 2009a; Strekalov et al., 2002). Work related to quantum
kicked-rotors, which also use multiple-pulse AIs (Tonyushkin & Prentiss,
2009; Tonyushkin et al., 2009b; Wu et al., 2009), have also demonstrated
sensitivity to atomic recoil.

Assuming that the jth pulse has a duration τj, complex pulse area 2j =

ujeiθ (where uj and θ are given by Equations [27] and [28], respectively),
and onset time Tj > Tj−1, followed by a period of free evolution Tj+1 − Tj

before the ( j+ 1)th pulse, the velocity averaged atomic density can be
expressed as

〈ρ(l)g (r, t; T)〉 =
1
V

∑
lN

χ
(l)
lN
(t; T)e−ilNq·r, (36)

where χ (l)lN
(t; T) is the amplitude of the (lNq)-Fourier harmonic of the den-

sity distribution. Here, N is the number of pulses, l = {l1, l2, . . . , lN} denotes
the set of interfering momentum states after the pulse sequence, and
T = {T1, T2, . . . , TN} is the set of pulse onset times. The amplitude of each
spatial component of the density is

χ
(l)
lN
(t; T) = −

∑
l1 ,...,lN−1

e−
[
lN
(

t−t(l,T)echo

)
/τcoh

]2

×

N∏
j=1

J(lj−lj−1)(wj)

(
sin(φj − θ)

sin(φj + θ)

)(lj−lj−1)/2

,

(37)

where τcoh = 2/qσv and φj is the recoil phase due to pulse j:

φj = ωq

N∑
k=j

lk(Tk+1 − Tk), (38a)

wj = 2uj

√
sin(φj + θ) sin(φj − θ). (38b)



AAMOP Ch03-9780123855084 2011/8/2 10:41 Page 147 #29

Time-Domain Interferometry with Laser-Cooled Atoms 147

In Equations (37) and (38a), l0 = 0 and TN+1 = t. The echo times, t(l,T)echo,
occur at temporal locations where the Doppler phase cancels and are
determined by the set of interferences, l, and onset times, T, that satisfy

t(l,T)echo = TN −
1
lN

N−1∑
j=1

lj(Tj+1 − Tj). (39)

Owing to the detection technique typically employed in experiments, one
is sensitive only to the amplitude of the q-Fourier harmonic of the den-
sity distribution, which corresponds to χ

(l)
1 (lN = 1). The scattered field

amplitude for N-pulses is therefore given by

E(N)(t; T) ∝ χ (l)1 (t; T). (40)

Setting N = 2 and l1 = −N̄ in Equation (40) gives the expression for the
two-pulse scattered field at the N̄th-order echo time (Equation [25b]).

An interesting feature of the N-pulse echo signal is that, in the absence
of spontaneous emission (θ = 0), the contrast of the grating at t = t(l,T)echo is
zero. There is a scattered field only at times ∼τcoh/lN about the echo times,
just as in the two-pulse case. Thus, the echo technique produces conditions
in the atomic sample at the echo times that are similar to those at t = 0,
namely an absence in density modulation.

2.5.1 Three-Pulse Atom Interferometer

As an illustrative example, one can consider three sw pulses applied in
the following sequence: T1 = 0, T2 = T, and T3 = T + δT, and a read-out
pulse applied at techo = (N̄ + 1)T to detect the N̄th-order echo. Just as in the
two-pulse sequence considered in previous sections, the first two pulses
cause all the momentum states to interfere in the vicinity of the echo time.
However, only those states that differ by ~q are detected. The third pulse
diffracts all the momentum states once more, as shown in Figure 13, but
effectively converts the difference between those states that interfere at
(N̄ + 1)T from m~q (m > 1) to ~q. Equivalently, the third pulse displaces
the N̄th-order echo from (N̄ + 1)T to (N̄ + 1)T + δT. However, there is still
an echo at (N̄ + 1)T provided δT is an integer multiple of τq. In this way,
the role of the third pulse is different from the first two pulses, whose sole
purpose is to produce an echo at (N̄ + 1)T.

The detected signal in this three-pulse scheme (as a function of δT) is
sensitive to more sets of interferences than in the two-pulse sequence. As a
result, the shape of the signal differs significantly from the two-pulse sig-
nal. One should expect periodic revivals in grating contrast as a function
of δT, with maxima occurring when δT is an integer multiple of the recoil
period, τq = π/ωq.
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Figure 13 Simplified recoil diagram for the three-pulse signal. Two momentum
states that differ by |1n| = 3 (

∣∣−~q
〉
and

∣∣2~q
〉
) interfere at 2T (gray circles) because of

diffraction from the third pulse. This shows an example of how the third pulse can
convert the difference between interfering states from |1n| > 1 to |1n| = 1.

Using Equation (39) with l1 = −N̄ and l2 = 1, the three-pulse recoil
signal can be approximated by

s(3)(δT ) ∝ J2
0

(
2u3

√
sin(ωqδT + θ) sin(ωqδT − θ)

)
, (41)

where θ is a phase caused by spontaneous emission during the pulses,
δT is varied between 0 and N̄T, and T is held fixed. The signal as a
function of δT is shown in Figure 14a for various pulse lengths, τ3. The
shape of the three-pulse signal is considerably different from that of the
two-pulse signal. Its symmetric, periodic peak-shaped structure is par-
ticularly advantageous for precision measurements of ωq. Furthermore, it
can be shown that the full-width at half-maximum (FWHM) of the peaks
is ∼1/u3ωq. This implies that by increasing the area of the third pulse
(increasing the field intensity, pulse duration or decreasing the detuning)
one can decrease the width of the peaks. This improves the determination
of a given peak center and therefore the measurement of ωq. This scaling
law has been confirmed experimentally and shown in Figure 14b.

It is possible to reduce the fringe width even further by increasing the
number of perturbation pulses (Beattie et al., 2009a). In order for each
additional perturbation pulse to rephase momentum states at the echo
time, they must be separated from all other perturbation pulses by a mul-
tiple of the recoil period, τq. Assuming that all perturbation pulses have
the same pulse area, u3, each additional pulse contributes to the signal
shape an additional factor of s(3)(δT) from Equation (41). This effectively
narrows each recoil fringe by a factor of N−1/2 such that the FWHM scales
as ∼1/

√
Nu3ωq. Figure 14c shows the theoretically predicted and experi-

mentally observed (2+N)-pulse recoil signals. The scaling of the FWHM
with N has been confirmed experimentally and is shown in Figure 14d.
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Figure 14 (a) Data from the three-pulse recoil experiment as a function of onset
time, δT , for various pulse durations, τ3. Solid circles: τ3 = 100 ns; solid squares:
τ3 = 200 ns; large circles: τ3 = 500 ns. (b) Scaling of the peak FWHM as a function of
τ3. Data is fitted to the function A(τ3 − τ0)

−n
+ B. The power was found to be

n = 1.18± 0.88. (c) Data from the (2+N)-pulse recoil experiment as a function of
onset time, δT , for various numbers of pulses, N, each with a duration of 100 ns.
Small circles: N = 1; solid squares: N = 15; large circles: N = 35. (d) Scaling of the
peak FWHM as a function of N. Data are fitted to the function A(N −N0)

−n
+ B. The

power was found to be n = 0.32± 0.47. In both (a) and (c), data are fitted to different
lineshapes (shown as solid lines) to guide the eye. The FWHM of the peaks was
obtained from these fits. Other pulse parameters: 1 ∼ 255 MHz, I ∼ 250 mW/cm2,
τ1 = 700 ns, τ2 = 200 ns.

In work relating to quantum kicked-rotors (Tonyushkin et al., 2009b), a
large number of pulses was used, each with pulse area uj � 1, for a mea-
surement of ωq. An appreciable loss in contrast and subsequent revival
was observed when N was increased. For the technique described in
Tonyushkin et al. (2009b), the time scale increases linearly with N. The
prediction that the FWHM of each recoil fringe scales as N−1/2 above is
equivalent to the N−3/2 scaling predicted in Tonyushkin et al. (2009b),
since a factor of N−1 is related to the linear increase in time scale with
an increase in N.

Figure 15a and b show a measurement of atomic recoil using the three-
pulse technique. The sw pulses of the AI are separated by ∼24 ms. The
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Figure 15 Recoil measurement using the three-pulse technique. Two windows are
shown, one at δT ∼ 0.1 ms (a) and one at δT ∼ 24 ms (b). The solid line is a fit to the
data consisting of a sum of Gaussians (one for each peak) that yields a measurement
of the recoil frequency precise to ∼350 ppb. Pulse parameters: τ1 = 1100 ns,
τ2 = 300 ns, τ3 = 400 ns, 1 = 210 MHz, intensity I ∼ 200 mW/cm2.

data were acquired in ∼1 hour. A fit based on a sum of Gaussian line-
shapes results in a measurement of ωq precise to ∼350 ppb. An interesting
aspect of using a third pulse to measure ωq is that the effect of signal decay
due to the transit time of cold atoms is avoided because T is fixed.

In summary, the multiple-pulse technique is better suited for a preci-
sion measurement of ωq than the two-pulse technique because the signal
exhibits a simple, narrow-featured shape. Further improvements in the
single measurement precision to the level of ∼50 ppb appear to be attain-
able by improving the signal to noise ratio and exploiting scaling laws
that can reduce the fringe width. Since the precision scales inversely pro-
portional to the timescale of the experiment, additional improvements in
precision can be achieved by increasing the transit time of cold atoms
through the region of interaction with a larger excitation beam diameter.
Studies of systematic effects in a precision measurement will include the
angle between traveling-wave components of the standing wave and the
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index of refraction of the atomic sample (Campbell et al., 2005), which is
affected by both the atomic density and the frequency of the excitation
beams.

3. LATTICE INTERFEROMETRY

3.1 Introduction

In the interferometer considered so far in this chapter, a set of off-resonant
standing-wave pulses are applied to a cloud of cold atoms. One of the
characteristic features of this interferometer is that at the exact times of
the echoes (when the Doppler phase difference between interfering ampli-
tudes is zero), the amplitude of the echo signal is zero. As discussed in
Strekalov et al. (2002), this property applies to an interferometer of the
type discussed here consisting of an arbitrary sequence of pulses—each
satisfying the Raman–Nath condition—and is due to cancelation of the
recoil phases of the amplitudes contributing to the echo signal at the same
instant that the Doppler phases cancel. This cancelation is related to the
fact that immediately after the first standing-wave pulse, the density of
the atomic cloud is uniform, since, under the Raman–Nath condition, the
atoms have not had time to move during the pulse. Consequently, one
must observe the echo at times other than the exact echo time, where
Doppler dephasing has reduced the size of the signal. A solution would
be to cool the atoms further, for example using a BEC (Gupta et al., 2002)
to achieve a subrecoil velocity spread. But this is technically more difficult
and is likely to give rise to systematic errors due to interactions between
atoms in the condensate.

In this section, we discuss a closely related type of echo-interferometer,
which we refer to as a “lattice interferometer” (Andersen & Sleator, 2009),
that doesn’t suffer from the issue mentioned earlier. It uses atoms ini-
tially laser-cooled, then loaded into a one-dimensional (1D) optical lattice
potential where it is further cooled in the potential, then released and later
exposed to a pulse of the lattice potential. As is discussed below, one con-
sequence of cooling the atoms in the lattice is that at the moment of release,
the atomic density is strongly modulated with the period of the lattice
potential. Consequently, at the exact echo times, the signal is a maximum,
yielding a signal (in our measurements) more than a factor of four greater
than obtained in the interferometer of Cahn et al. (1997). This interfer-
ometer shares the robustness against vibrations, accelerations, rotations,
magnetic field gradients, and differences of AC Stark shifts between
internal levels of the echo-type time-domain interferometers described in
Section 1, and in Cahn et al. (1997).

In addition, we discuss how this interferometer performs when the
optical lattice pulse violates the “short” pulse or Raman–Nath limit
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(a regime not previously investigated in related interferometers), and find
that a moderate violation of this limit can enhance the performance of the
interferometer. We show that the interferometer reveals information on
the quantum dynamics of atoms in an optical lattice potential, and thereby
may be useful for the study of driven 1D systems (Raizen, 1999). Further-
more, we find that for specific pulse lengths, a coherent signal can occur at
times that differ from the expected echo time by as much as 10 τcoh, where
τcoh = 2/qσv is the coherence time expected from the initial momentum
spread of the atoms.

3.2 Description of the Interferometer

Figure 16 shows a timeline of the experiment, which uses a vapor cell
loaded MOT of 85Rb atoms loaded for 40 ms. An optical molasses stage
of 7 ms further cools the atoms and loads them into the optical lattice,
which is formed by two vertically polarized horizontally propagating
laser beams with wave vectors k1 and k2, angled apart by 162◦, and
detuned 395 MHz above the |5S1/2, F = 3〉 to |5P3/2, F′ = 4〉 transition. The
lattice laser beams are clipped Gaussian beams with a diameter larger than
the MOT cloud, so all the atoms in the MOT are loaded into the lattice.
After the molasses stage, which cools the atoms to ∼36 µK, the repump
laser remains on for 100 µs to prepare the atoms in the F = 3 ground state.
Acousto-optic modulators control the optical lattice beams. At time t = 0
(∼10 µs after the turn-off of the repump light) we abruptly (in ∼20 ns)
turn off the optical lattice. After leaving the atoms in darkness for a time
T, we pulse the optical lattice on for a short time τ . Later we detect
the amplitude of atomic density modulations with period 2π/q, where
q = k1 − k2, by applying a weak off-resonant optical field along direction

40 ms 7 ms

k1

k2

T

T T

T Δt

MolassesMOT

Lattice

Detection
(a)

(b)

Doppler
phase

Figure 16 (a) Timeline of the experimental cycle. (b) Doppler phase diagram for
atoms released from the optical lattice.
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k1 and measuring the amplitude of the field Bragg scattered off of the
atomic density modulation along the direction k2 using the heterodyne
technique described in Section 1 and in Cahn et al. (1997).

3.3 Calculation of the Signal

To calculate the expected signal we assume that the atoms are in thermal
equilibrium in the optical lattice, and localized to narrow regions near the
potential minima, so they form a periodic density distribution and effec-
tively experience a harmonic oscillator potential. Since the temperature
of the atoms is ∼36 µK, their thermal de Broglie wave coherence length is
much shorter than the period of the optical lattice. Under these conditions,
it can be shown that the state of the atomic system can be closely approx-
imated by an incoherent mixture of states identical to the ones obtained
by an atomic plane wave of momentum k0 impinging on a periodic array
with period a = (2π/q)q̂ of Gaussian transmission functions, each with
width σ (the width of the atomic density distribution in a single minimum
in the lattice). Thus, we can write ψk0(r) = ψ0(r)eik0·r, where

ψ0(r) =
1

(2πσ 2)1/4

∑
m

exp[−(r −ma)2/4σ 2]. (42)

We would like to express Equation (42) as a sum of momentum eigen-
states, so we write

ψ0(r) =
∑

n1

An1 ein1q·r, (43)

with

An =
1
a

a/2∫
a/2

ψ0(x)e−in1qxdx ≈
1
a

∞∫
∞

e−x2/4σ 2

(2πσ 2)1/4
e−in1qxdx (44)

≈

(√
2/a

)
(2πσ 2)1/4 e−n2

1(qσ)
2
, (45)

where the integral is along the direction of a. This gives, up to a constant
factor,

ψk0(r, t = 0) =
∞∑

n1=−∞

e−n2
1(qσ)

2
ei(k0+n1q)·r. (46)

Each state ψk0 contributes to the mixture with a weight given by the
momentum (~k0) distribution of a gas of atoms in thermal equilibrium.
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The experimental signal can be computed by first calculating the signal
resulting from the system initially in state ψk0(r, 0) and then summing this
signal over the weighted distribution of k0.

After the lattice is turned off at t = 0, each plane wave, exp[i(k0 +

n1q) · r], in Equation (46) acquires a phase φ = (ωk0 + n2
1ωq + n1q · v0) t,

where ωq = ~q2/2M is the (two-photon) recoil frequency and n1q · v0t is
the Doppler phase, which is proportional to the initial atomic velocity
v0 = ~k0/M, and ωk0 = ~k2

0/2M contributes to an overall phase that can be
ignored. The optical lattice pulse, turned on at time t = T, diffracts each
plane wave into a set of plane waves with wave vectors differing by inte-
ger multiples of q. If τ is so short that atomic motion can be neglected
during the pulse (Raman–Nath condition), no Doppler phase evolution
occurs during this time. Figure 16(b) shows a diagram of the Doppler
phase evolution of various amplitudes as a function of time in the inter-
ferometer. Crossing lines in the diagram occur at times when different
momentum states have the same Doppler phase, and atomic fringe pat-
terns are produced at these times. In particular, fringe patterns with period
2π/q are produced close to times tN̄ = (N̄ + 1)T for positive integer N̄ (the
tN̄ are called echo times). A detailed calculation similar to the one in out-
lined in Section 1, which assumes that the interaction during the pulse is
given by H = ~χ cos(q · r), gives a signal

S(1t) ∝ e−(qσv1t/2)2 e−
1
2 N̄2(qσ)2 JN̄+1{2u sin[ωq(N̄T +1t)]}. (47)

where σv =
√

2kBT /M, kB is Boltzmann’s constant, T the temperature of
the atoms, 1t ≡ t− tN̄, and u ∼ χ τ is the area of the lattice pulse.

3.4 Experimental Results

Figure 17a shows the signal obtained at around T = 81 µs with a short
pulse of duration τ = 350 ns (solid curve). All data shown correspond to
the fundamental echo N̄ = 1. The estimated temperature of the atomic
gas was found by fitting Equation (47) to the data. The signals shown in
Figure 17a are the largest that could be obtained in the short pulse limit
with the laser power and detuning used. In contrast to the signal obtained
from the interferometer in Cahn et al. (1997) (also shown in Figure 17a for a
similar number of atoms), the lattice interferometer signal reaches a maxi-
mum at the echo time (1t = 0) and with a maximal signal size more than a
factor of four larger, demonstrating an improved signal-to-noise ratio and
higher contrast of the atomic density modulation. We ascribe this to the
fact that in this interferometer the signal is an echo of a density modula-
tion of the atoms, whereas in Cahn et al. (1997) it is a velocity (or phase)
modulation that with time evolves into a density modulation, but also
partially dephases because of the thermal velocity spread of the atoms. By
laser cooling the atoms into the optical lattice, we avoid the huge loss of
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Figure 17 (a) Solid curve: signal from lattice interferometer for τ = 350 ns and
T = 81 µs. Dashed curve: the maximum signal we could obtain from the
interferometer described in Cahn et al. (1997). (b) Peak signal as a function of pulse
separation T for small-area pulses τ = 100 ns (squares). Peak signal theoretically
expected from Equation (47) (corresponding solid curve). Crosses connected by a
solid line: the measured peak signal for τ = 1.2 µs, too long to satisfy the Raman–Nath
condition. The longer pulse yields sharper features in the signal.

atoms, associated with using an optical mask—the atom-optics analog of
an absorption grating in light optics (Turlapov et al., 2005)—for genera-
tion of the atomic density modulation. Note that the revival of the density
modulation shows that the atomic state continues to carry the informa-
tion of its lattice preparation, despite its density distribution shortly after
release being indistinguishable from a thermal cloud.

Equation (47) also shows that the peak signal at the echo time varies
periodically as a function of T with period given by the Talbot time
τT = 2τq = 2π/ωq. This interferometer can therefore be used to measure the
Talbot time (or equivalently, the recoil frequency), which, together with
other well-known constants, constitutes a measurement of the fine struc-
ture constant, α (see Section 2). Figure 17b shows the analytical prediction
of Equation (47) together with the experimental measurements of the peak
signal as a function of T for a pulse length of 100 ns. In the analytical pre-
diction we use χ = 2.0 MHz determined in a separate measurement of the
value of τ that yields the first maximum in the signal for T = 81 µs. The
overall amplitude of the analytical result was adjusted to fit the data. By
comparing the size of the echo signal for N̄ = 1, 2, and 3, we can use Equa-
tion (47) to extract the degree of localization, σ , of the atoms in the lattice.
We find that σ = 55 nm, or about 1/7th the 390-nm period of the lattice
potential. This could be reduced by using a BEC released from an optical
lattice.
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Sharp features in the interferometric signal as a function of T (or
equivalently higher frequency components in the signal) improves the
precision with which the Talbot time and recoil frequency can be deter-
mined (Cataliotti et al., 2001). Equation (47) indicates that if one increases
u, more oscillations and sharper features occur in each period when T is
scanned, thus increasing the sensitivity of the interferometer. The depth
of the lattice potential ~χ , and thereby u, can be increased by increas-
ing the power in the lattice beams, but these results were obtained using
the maximum laser power available. Increasing τ will also increase u, but
this will eventually lead to a breakdown of the Raman–Nath condition,
and Equation (47) will no longer apply. When the Raman–Nath condi-
tion is violated, the signal is still periodic in T, however, with period τT

independent of pulse duration. Thus, the recoil frequency can be deter-
mined simply from this period. It is therefore of interest to know what
happens when the pulse length is increased beyond the Raman–Nath
limit. Figure 17b shows the signal as a function of T for a pulse dura-
tion of τ = 1.2 µs, which is too long to satisfy the Raman–Nath condition.
It is clear that the longer pulse yields sharper features in the signal as a
function of T.

Figure 18 shows the echo signal as a function of both T and 1t for dif-
ferent pulse durations τ . Horizontal cross sections in this figure represent
the signal as a function of 1t (as shown in Figure 17a), and vertical cross
sections represent the signal as a function of T (as shown in Figure 17b).
For τ = 1.2 µs (Figure 18c) we see a clear deviation from the results pre-
dicted by Equation (47), namely that the signal vanishes for T around
(n+ 1/2)τT/2 with n an integer (∼80 µs in Figure 18c), and that the signal
is asymmetric around nτT/2. However, the narrow “dark” fringe around
nτT/2 persists, enabling an accurate determination of τT. The experimen-
tal observation that the sharpest features of the echo signal are found for
pulse durations between 1 and 2 µs is perhaps not surprising, since the
optical lattice imparts maximum momentum into the atoms for durations
around τ ∼ τosc/4, where τosc is the oscillation period of an atom close to a
potential minimum.

We use the sharp features described earlier to determine the Talbot
time by taking data with high resolution in T for τ = 1.2 µs around
T = 65 µs and around T = 455 µs—differing in T by ∼6 Talbot times
(see Figure 18d). From this we obtain a value1 of h/MRb = (4.6997±
0.0003)× 10−9 m2/s2, where MRb is the mass of a 85Rb atom, in agreement
with the value of h/MRb = 4.6994× 10−9 m2/s2 deduced from Audi et al.
(2003). Our “large” uncertainty arises from the determination of the angle
between the beams, a problem that can be overcome by using counter

1The uncertainties are one standard deviation combined systematic and statistical.
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Figure 18 Echo signal as a function of 1t and time of the lattice pulse T (the echo
time is t1 = 2T + τ ). Figure 17b is a vertical cross section at the echo time (1t = 0) and
Figure 17a is a horizontal cross section of the data in this figure. (a), (b), (c):
Experimental data for pulse durations τ = 100 ns, 600 ns, and 1.2 µs, respectively. For
τ = 1.2 µs, the signal vanishes for all T around 80 µs. (d) High-resolution
experimental data for τ = 1.2 µs. (e) Experimental data for τ = 3.5 µs. Features as a
function of T are no longer as sharp as for τ = 1.2 µs. We observe a coherent signal
for times that differ greatly from the echo time. (f) Numerical calculation of the
expected signal for the parameters of (e).
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Figure 19 Maximum signal as a function of pulse duration. Dots are the data, and
the solid curve is a numerical calculation multiplied by an exponential decay to
accommodate for decoherence due to photon scattering. The dashed line is the
maximum signal expected from Equation (47) and does not show oscillations. We see
that violating the Raman–Nath condition can increase the contrast of the atomic
density modulation.

propagating beams and coupling between optical fibers (Cladé et al., 2006;
Muller et al., 2008).

For τ = 3.5 µs (see Figure 18e), we observe the interesting phenomenon
that a coherent signal for certain values of T is observed for times that
differ from the echo time (2T + τ ) by as much as 40 µs. This is more
than 10 times the decoherence time of a few µs expected from the initial
thermal spread of atoms. The nature of the signal also seems to indicate
that its occurrence is not due to long coherence times, but rather because
the dynamics of the atoms during the lattice pulse enables a coherent
rephasing at this time. We note that this phenomenon occurs for pulse
durations τ around τosc/2. Figure 18f shows a 1D numerical calculation of
the expected signal for the same parameters as the experimental results in
Figure 18e. No photon scattering was included in the calculation.

To further investigate the dynamics of the atoms in the optical lattice
we measured the maximum signal size for a given pulse duration τ by
scanning the pulse separation T. Figure 19 shows a plot of this maximum
signal as a function of τ . We observe that violating the Raman–Nath limit
can improve the contrast of the atomic density modulation since pulse
lengths from 1 to 5 µs yield a larger signal than predicted by Equation (47)
(also shown in Figure 19). In contrast to the prediction of Equation (47),
the signal shows damped oscillations with a period of around 6.6 µs. This
period is consistent with τosc reflecting a partial revival of the initial state
at this time. This effect has been observed previously using a BEC in an
optical lattice (Ovchinnikov et al., 1999), and the fact that it is easily seen in
our data indicates that this interferometer can be used as a sensitive probe
of the quantum dynamics in diffracting structures, including classical
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chaotic systems such as the δ-kicked rotor (Raizen, 1999). Figure 19 also
shows a numerical calculation of the expected maximum signal as a func-
tion of τ . This calculation is based on the coherent interaction of the atoms
with the laser field, but to account for decay of coherence due to pho-
ton scattering in the optical lattice, includes a multiplicative exponential
decay as a function of τ , where the decay rate of 3.5× 104 s−1 is found by
fitting to the data. This decay rate is smaller than the average photon scat-
tering rate of 9× 104 s−1 calculated from our measured value of χ and the
detuning of the light.

In summary we have described an atom interferometer that uses atoms,
laser-cooled into an optical lattice, followed by an optical-lattice pulse.
The technique is capable of producing atomic density modulations with a
contrast significantly higher than the interferometer of Cahn et al. (1997).
This increases the signal-to-noise ratio of the interferometric signal. We
discussed how the interferometer performs when the pulse violates the
Raman–Nath condition and found that a moderate violation can improve
the sensitivity and increase the contrast of the atomic density modulation.
For specific pulse lengths in the long-pulse regime, we observe a coher-
ent signal at times that differ greatly from the echo time. We showed that
the interferometric signal can be used as a probe of the dynamics of the
atoms in the optical lattice. The technique also reveals the degree of locali-
zation of atoms in an optical lattice, and may therefore be employed in the
study of superfluid to Mott-insulator quantum phase transition of BECs
in optical lattices (Greiner et al., 2002; Spielman et al., 2007).

4. FREQUENCY-DOMAIN AI EXPERIMENTS

4.1 Frequency-Domain Measurements of Recoil

This section describes an atom interferometric frequency-domain mea-
surement of ωq (Weel & Kumarakrishnan, 2003) that uses the echo tech-
nique to generate a ground-state Ramsey fringe pattern. This work is
based on the scheme proposed in Dubetsky and Berman (1997).

Figure 20 shows the pulsed-laser fields used to excite the laser-cooled
sample. At t = 0, an excitation pulse consisting of two off-resonant,
counter-propagating traveling waves with frequencies ω1 and ω2 is used
to drive two-photon transitions in atoms prepared in a single hyperfine
ground state. The sample is again excited at time t = T by a second set
of traveling-wave pulses with reversed k-vectors. As a result, the sample
experiences an intensity modulation that is translated along two opposing
directions. Reversing the directions of the second set of excitation pulses
results in a cancelation of Doppler phases associated with momentum
states differing by ~q that interfere in the vicinity of the echo time t =
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Figure 20 Schematic diagram of pulsed laser fields used in experiment.

2T. Here, q = 2k. The rephased density grating formed in the sample is
detected by scattering an off-resonant traveling wave with frequency ω1

and measuring the amplitude and phase of the scattered light at fre-
quency ω2. In this manner, it is possible to probe the oscillatory Ramsey
phase φ = Tδ acquired by the grating, which depends on the frequency
difference δ = ω1 − ω2. In comparison, other Ramsey fringe experiments
involving ground or excited states (Barger et al., 1979; Bergquist et al.,
1977; Ruschewitz et al., 1998; Sengstock et al., 1993; Weiss et al., 1993)
rely on similar excitation schemes and the detuning dependence of the
population or coherence associated with an atomic level.

Using the treatment in (Dubetsky & Berman, 1997), the back-scattered
electric field amplitude can be expressed as

S(δ; T) = exp(4iTδ)J2[2u2 sin(ωqT)], (48)

where u2 is the pulse area of the second excitation pulse. The complex
exponential in Equation (48) makes it necessary to measure the phase of
the signal in order to observe the effect of recoil.

In Ramsey fringe experiments using atomic beams (Bordé et al., 1984),
the excitation zones are spatially separated. The time between interactions
with the laser fields, T, differs for each velocity class associated with the
longitudinal velocity distribution of the atomic source. As a consequence,
the fringe pattern can be observed because the signal is averaged over the
entire velocity distribution. In an experiment with a laser-cooled sample,
the time separation between interactions with light are the same for all the
atoms. Therefore, it is necessary to average the signal over T to obtain the
Ramsey lineshape (Vasilenko et al., 1985).
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4.2 Experimental Details

The experiment is carried out in a laser-cooled sample with a temperature
of ∼200 µK that contains ∼108 Rb atoms. The traveling-wave pulses used
for atom interferometry are tuned ∼90 MHz above the F = 3→ F = 4′

transition in 85Rb, and controlled by AOMs. The AOMs are driven by
oscillators which are phase locked to a commercially available rubid-
ium frequency standard with a stability characterized by a 1-second
Allan deviation of 2× 10−11. The oscillators operate near 250 MHz and the
frequency difference, δ, can be adjusted to within 1 mHz. The time sep-
aration, T, between pulses can be controlled with an accuracy of 500 ps
using delay generators with time bases slaved to the rubidium standard.
Signal detection is accomplished using the balanced heterodyne detection
system used in Cahn et al. (1997) and Weel and Kumarakrishnan (2003).
The echo signal is observed on both channels of the detection system in
the form of a beat note. These signals are mixed down to DC to obtain the
in-phase and in-quadrature components from which the signal amplitude
and phase can be determined.

4.3 Results and Discussion

By integrating the first half (before the zero crossing) of the dispersion-
shaped echo envelope (shown in Fig. 3a)) and subtracting the integral
of the second half, it is possible to obtain an amplitude component.
Figure 21a shows the amplitude as a function of δ for T = 100 µs. The
amplitude exhibits an oscillatory dependence on δ given by S0 = cos(Tδ)
as seen from the fit in Figure 21a. For a fixed value of T, the average
value of the oscillation frequency is determined from the in-phase and
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in-quadrature components of the signal. The measurement is repeated for
different time pulse separations, T. A linear fit of the measured period as
a function of T gives a slope of 4.004 and an offset of 0.7 µs. The value of
the slope is in agreement with Equation (48), which predicts a slope of 4.

The amplitudes of the oscillatory signals are weighted to compensate
for the exponential decay of the echo amplitude versus T due to decoher-
ence from scattered light and collisions. The Ramsey fringe pattern shown
in Figure 21b is obtained by averaging a particular signal component over
the range T = 12→ 164 µs in steps of 4 µs.

The fringe pattern in Figure 21b shows peaks at±0.5ωq and±ωq, which
is consistent with Equation (48). The value of ωq is obtained by fitting
the data to Equation (48) using a least squares fit with ωq and u2 as free
parameters. The fit yields ωq = 97.0× 103 s−1, which is consistent with the
expected value of the two-photon recoil frequency. Analysis of the residu-
als allows a determination of ωq with a precision of ∼1/103. The precision
can be improved by measuring the frequency difference between widely
separated recoil components that can be recorded by increasing the pulse
area u2. As in all Ramsey experiments, the range of detunings (∼10 MHz)
is determined by the excitation pulse bandwidth, and the width of the
recoil peaks is expected to scale as ∼1/T.

4.4 Frequency Synthesizer

A potential advantage of this measurement technique is that possible sys-
tematic uncertainties in the definition of T that can affect time-domain
experiments are avoided, since the signal is averaged over T. In contrast
to Ramsey experiments with excited states (Barger et al., 1979; Bergquist
et al., 1977; Ruschewitz et al., 1998; Sengstock et al., 1993) that are limited
by the radiative decay time, the precision that can be achieved if decoher-
ence mechanisms are eliminated should be limited only by the transit time
of ground-state atoms through the region of interaction. Since the experi-
ment utilizes the same laser to generate excitation frequencies ω1 and ω2,
variations in laser frequency are common to both beams and a laser with
an ultra narrow linewidth is not required, as it is in atomic clock exper-
iments (Barger et al., 1979; Bergquist et al., 1977; Ruschewitz et al., 1998;
Sengstock et al., 1993). In comparison, an advantage of time-domain mea-
surements is that they are insensitive to the effect of vibrations, since they
do not rely on the phase of the scattered electric field.

If the transit time limit is achieved, as in time-domain experiments, the
precision of frequency-domain measurements will depend on the preci-
sion and tunability of δ. The measurement in Weel and Kumarakrishnan
(2003) relied on a RF synthesizer assembled from commercially available
components to produce dual outputs (differing by δ) to drive the excita-
tion AOMs. The synthesizer allows δ to be varied over ∼10 MHz in steps
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of 1 mHz while maintaining frequency stability with respect to a master
reference oscillator. Additionally, a simple measurement and correction
loop ensures that the outputs maintain a fixed phase relationship if δ is
varied.

The block diagram of the synthesizer is shown in Figure 22. In this cir-
cuit, there are two phase-locked loops (PLLs) operating at 250 MHz and
238 MHz. These are fractional-divide-by-N PLLs, meaning that the refer-
ence and output frequencies are not necessarily related by an integer mul-
tiple. These devices are tunable only in steps of ∼0.2 MHz, necessitating
additional electronics for fine-tuning. To tune the output at 250 MHz + δ,
a commercially available arbitrary waveform generator (AWG) tunable in
steps as small as 1 mHz is incorporated. This device has a maximum out-
put frequency of 30 MHz and is set to 12 MHz + δ. The choice of 12 MHz
ensured that when the AWG’s output is mixed with the PLL output at
238 MHz, a sum frequency near 250 MHz is obtained. A signal with fre-
quency 250 MHz + δ is obtained by filtering out the difference frequency.
Filtering is accomplished using a commercially fabricated narrow-band
notch filter (FWHM 8 MHz) whose center frequency is 250 MHz. Both
of the PLLs and the AWG are referenced to a rubidium clock operating
at 10 MHz. This clock has excellent short-term stability, with a 1-second
Allan deviation of 2× 10−11. Both the 250 MHz and 250 MHz + δ outputs
are locked in phase to the stable Rb clock, and are therefore phase-locked
to each other.

4.5 Measurements of Rotation

The frequency synthesizer developed for the recoil measurement is also
suitable for a proof of concept measurement of rotation. If a closed-loop
optical interferometer rotates about an axis perpendicular to its enclosed

To AOM
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For phase
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and feedback

Phase programming
from computer

250 MHz + δ

Notch
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10MHz ± 5 × 10−9%
Rb clock
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Figure 22 The block diagram for the synthesizer, where
⊗

is a RF mixer.
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area, the path difference between counter-propagating waves due to rota-
tion produces a phase shift 1φR = �Ak/c (Sagnac effect). Here, � is the
frequency of rotation, A is the area enclosed by the interferometer, k is
the wave vector, and c is the speed of light. The Sagnac effect is the basis
for the fibre ring gyroscope (Vali & Shorthill, 1976), a device commonly
used in navigation. The obvious advantage of laser gyroscopes is that the
enclosed area can be enhanced by sending the light on many round-trips,
thereby improving the sensitivity.

For an AI, the corresponding phase shift is 1φR = �AM/~, where M
is the mass of the atom. Replacing light waves with matter waves can
lead to a significant improvement in sensitivity. This is because, for the
same enclosed area, the phase shift is Mc/~k ∼ 1010 times greater for atoms
in comparison with light. For atoms, the challenge is to produce a large
enclosed area. Such atom gyroscopes should be able to detect rotations as
small as 6× 10−3 deg/h (Sleator et al., 1999). This is around three orders of
magnitude smaller than the Earth’s rate of rotation. Examples of AI-based
measurements of rotation include a Raman interferometer measurement
in a cesium atomic beam (Durfee et al., 2006; Gustavson et al., 1997a) and a
BEC experiment in which the rotational phase shift is enhanced by circu-
lating the sample in an elongated trap (Burke & Sackett, 2009). Another
approach involves confining the atoms within a linear magnetic guide
and moving this guide back and forth while diffracting the atoms, thereby
enhancing the enclosed area through multiple circuits of the same small
physical area (Wu et al., 2007).

If the Ramsey fringe experiment is carried out by launching a cloud of
cold atoms across the zone of interaction in a direction such that A ·� is a
maximum, the effect of the earth’s rotation is expected to produce a shift
in the position of the central fringe in Figure 21b. The area enclosed by the
AI can be estimated as

A =
~qvT2

M
. (49)

For typical operating parameters of T ∼ 10 ms and an atom launch speed
v ∼ 2.5 m/s the area is 0.76 mm2. Assuming that � is the vertical compo-
nent of the Earth’s rotation in Toronto, we obtain a fringe shift of 0.8 Hz.
The expected width of the central fringe for these parameters is 20 Hz,
which suggests that the fringe shift should be easily observable, since δ
can be varied in subhertz steps.

Although this experiment is simple in concept, the fringe shift due
to rotation is indistinguishable from the shift produced by gravitational
acceleration. Therefore, it is critical to align the AI beams in a plane
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perpendicular to the local gravitational field and to measure the angle of
the beams with respect to the horizontal.

5. TIME-DOMAIN AI EXPERIMENTS—GRAVITY

5.1 Introduction

Atom interferometers based on cold atoms have enormous practical appli-
cations related to inertial sensing because of the extraordinary sensitivity
to gravitational acceleration, g (Peters et al., 1999), gravity gradients,
(McGuirk et al., 2002; Snadden et al., 1998), and rotation (Durfee et al.,
2006; Gustavson et al., 1997b, 2000). Common applications include oil
and mineral prospecting, seismic exploration and monitoring, and cor-
rection of tidal charts. Most of these developments have been realized
using the well-known Raman interferometer (Kasevich & Chu, 1991) in
which cold cesium atoms are manipulated in two hyperfine ground states
using optical Raman transitions. Raman interferometers have also been
used for precision measurements of the universal gravitational constant,
G (Fixler et al., 2007; Lamporesi et al., 2008), and gravitational redshift
(Müller et al., 2010). The technology based on this class of interferome-
ters has become sufficiently advanced that it is being utilized for remote
sensing using mobile payloads (Le Gouët et al., 2008; Young et al., 2007;
Yu et al., 2006). Another independent technique for realizing precise mea-
surements of gravity in a compact setup involves exploiting the properties
of Bloch oscillations in an optical lattice (Poli et al., 2011).

Despite the advances of Raman interferometers, it is interesting to con-
sider the potential for realizing precise measurements of gravitational
acceleration using the single-state echo type interferometer used for recoil
measurements as described in earlier sections. The AI is based on the con-
figuration developed at NYU (Cahn et al., 1997; Weel et al., 2006). As in the
case of cold-atom Raman interferometers, the timescale of the experiment
is determined by the transit time of atoms through the region of interac-
tion defined by the laser beams. A particular advantage of the echo AI is
that only a single laser frequency is used and that no velocity selection is
required. Transit-time-limited recoil experiments using this technique that
are presented in this work indicate that state selection may not be required
if magnetic gradients are adequately suppressed (Weel et al., 2006).

5.2 Theoretical Background

The AI involves excitation of the sample along the vertical by two
standing-wave pulses separated by a time T as shown in Figure 23.
This configuration is similar to that of the AI used in the time-domain
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Figure 23 Curved trajectories of atomic wave packets due to gravity.

measurements of atomic recoil. The traveling-wave components of the
standing-wave pulses are sufficiently blue detuned with respect to the
excited state such that the effects of spontaneous emission during excita-
tion can be ignored. The durations of the excitation pulses are sufficiently
short, meeting the Raman–Nath criterion that the displacement of atoms is
small compared to the standing-wave period during the interaction time.
The first pulse at t = 0 diffracts atoms into a superposition of momen-
tum states that differ by n~q, where q = 2k for counter-propagating beams
and k = 2π/λẑ is the wavevector of the laser light. The λ/2 grating that
is formed by atoms focused to the nodes of the standing wave potential
is rephased by the second standing-wave pulse at t = T in the vicinity
of the echo time t = 2T. The determination of gravitational acceleration
relies on measuring the contrast and phase of the grating by coherently
back-scattering a traveling-wave read-out pulse from the sample.

Figure 23 shows a recoil diagram representing curved trajectories of
a subset of momentum states that contribute to the signal. The read-out
pulse detects the amplitude and phase of the matter wave interference
in the vicinity of 2T only from trajectories that differ by ~q. It is possible
to show that the gravitational phase shift is not related to the difference in
path lengths between the arms of the interferometer. Rather, it is related to
the energy of the atom that is affected by both recoil and gravity. Using the
action principle, it can be shown that the phase accumulation due to grav-
ity scales as gT2. Thus, the measurement of gravity relies on the connection
of the phase of the back-scattered light and the phase of the grating.

A calculation of the signal in the absence of spontaneous emission is
discussed in Cahn et al. (1997). It can be shown that the back-scattered
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electric field amplitude is proportional to the λ/2-periodic spatial compo-
nent (q-Fourier harmonic) of the atomic density grating. The echo signal
(scattered field amplitude) can be written as

E(1t; T) ∝ −e−(1t/τcoh)
2
J1[2u1 sin(ωq1t)]J2{2u2 sin[ωq(T +1t)]}, (50)

where Jn(x) is the nth-order Bessel function of the first kind, u1 and u2 are
the pulse areas of the first and second standing-wave pulses, respectively,
which define the atom-field coupling, ωq = ~q2/2M is the two-photon
recoil frequency, and 1t = t− 2T is the time relative to the echo time.

In the presence of gravity, the echo signal can be shown to be (Weel
et al., 2006)

Eg(1t; T ) = E(1t; T )eiφg(1t;T ), (51a)

φg(1t; T ) = −
qg
2

(
2T2
+ 4T1t+1t2

)
, (51b)

where φg is the phase of the atomic grating, which is accelerating down-
ward because of gravity. This phase is imprinted on the light scattered
by the atoms from the read-out pulse. It is useful to split the phase
due to gravity into two components, φg = φAI + φD. The first term, φAI =

−qgT2, is referred to as the AI phase, since it depends solely on T and
is proportional to the area of the interferometer. The second term, φD =

−qg(2T1t+1t2/2), is called the Doppler phase, since it can be shown that
φD = qv(t)1t, where v(t) = ∂(φD/q)/∂1t = −gt is the speed the atoms have
gained in the presence of gravity.

Figure 24a is an illustration of the effect of the Doppler phase on the
signal envelope at fixed T. The overall signal amplitude as a function of T
in Figure 24b illustrates the modulation at the recoil period τq = π/ωq and
the increasing oscillation frequency due to the interferometer phase. The
experiment relies on measuring the phase of the signal with respect to a
frame of reference in which the atomic sample is falling in gravity. Such an
inertial reference frame can be defined by an optical local oscillator (LO)
with a frequency ωLO. The back-scattered light from the sample due to the
read-out pulse with a frequency ωAI is detected in the form of a beat note
at a frequency ωLO − ωAI using a heterodyne technique (Cahn et al., 1997;
Shim et al., 2002, 2005; Weel et al., 2006).

The electric field of the LO can be written as ELO(z, t) = E0ei(kz−ωLOt),
while the scattered electric field from the atoms has the form EAI(z, t) =
E(T;1t)ei(k(z+1z)−ωAIt). The heterodyne signal produced by overlapping the
two beams on a photodetector can be shown to be

I(t) ∝ E0E(T;1t) cos[(ωAI − ωLO)t+ k1z] (52)
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Figure 24 Illustrative plots representing the echo signal in Equation (51a) and the
dependence of the AI phase as a function of T in Equation (51b). (a) Echo signal
(shown as the dashed line) exhibits a dispersion shape in the absence of gravity. The
echo signal in the presence of gravity (shown as the solid line) exhibits additional
oscillations due to the Doppler phase in Equation (51b). (b) The amplitude of the echo
signal as a function of T (dashed curve) is modulated at the recoil frequency, ωq. The
solid curve shows the in-phase component of the echo amplitude in the presence of
gravity. A value of g = 980 m/s2 has been used so that the changing frequency is
evident over successive recoil periods. This represents the effect of the AI phase term
in Equation (51b). In experiments involving laser-cooled rubidium atoms, the duration
of the signal envelope is τcoh ≈ 2 µs, and the recoil period τq ≈ 32 µs.

where E(T;1t) is given by Equation (50) and

1z = −
1
2

g(2T)2
+ v0(2T)+ z0. (53)

Here, the grating displacement 1z is determined by g, a launch velocity
v0, and the initial position of the grating, z0. The next section describes
how the in-phase and in-quadrature components of the electric field are
obtained from the signal intensity in Equation (52).

5.3 Experimental Setup

Figure 25a shows the experimental setup. Figure 25b illustrates the dis-
placement1z given by Equation (53). An acousto-optic modulator (AOM)
is used to produce the excitation beams. The diffracted beam from the
AOM passes through the atom cloud and is reflected by a corner cube
retro-reflector to produce a standing wave. At the time of the read-out
pulse, a mechanical shutter blocks the retro-reflection to produce a trav-
eling wave. The undiffracted beam from the AOM is the LO, which is
aligned through the same optical elements as the excitation beam and is
physically separated from the atomic cloud. The back-scattered light from
the sample and the LO are combined on a balanced heterodyne detec-
tor to produce a beat note at ωRF = ωLO − ωAI. The heterodyne signal is
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ELO = E0 cos (kz − ωLOt)

EAI = E (T; Δt)  cos (k (z − Δz) − ωAIt)

zΔz
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Figure 25 (a) Experimental setup. (b) Illustration of beam paths and cloud
displacement in Equation (53). As T is increased, the atom cloud falls in gravity,
changing the path difference between the back-scattered signal and the local
oscillator.

mixed down to DC using the RF oscillator driving the AOM to generate
the in-phase and in-quadrature components of the back-scattered electric
field. The signal components are squared and integrated to obtain the in-
phase and in-quadrature amplitudes. The total signal amplitude is equal
to the individual component amplitudes combined in quadrature.

5.4 Measurement of g

Figure 26a shows the in-phase component of the scattered field in the
vicinity of the echo for T ∼ 1.5 ms. The signal envelope can be modeled by
Equation (51a). At small values of T, the effect of gravity is not appreciable
and the signal envelope resembles a dispersion shape. Figure 26b shows
the echo signal shape for a larger pulse separation: T ∼ 11 ms. The signal
envelope is modulated by the1t-dependent Doppler phase, φD = −qgt1t,
due to the effect of gravity. It is interesting that g can be inferred from the
echo signal shape by measuring the change in the Doppler frequency as
a function of t, where t is the time relative to trap turn-off. Here, t can be
changed by increasing the area of the interferometer (i.e., increasing T),
or by holding T constant and varying the timing of the excitation pulses
relative to trap turn-off. Figure 26c shows the in-phase and in-quadrature
components of the signal as a function of T. The two signals can be used to
measure the AI phase, φAI = −qgT2. Since the AI phase scales as T2, while
the Doppler frequency effectively scales as T, a measurement of φAI results
in a more sensitive measurement of g.
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Figure 26 (a) Dispersion-shaped echo envelope at T ∼ 1.5 ms. (b) Echo envelope
modulated because of the effect of gravity at T ∼ 11 ms. (c) In-phase (dashed) and
in-quadrature (solid) components of the signal as a function of T obtained by
averaging 32 repetitions. (d) Total signal amplitude (components combined in
quadrature) as a function of T , showing modulation due to atomic recoil. (e) In-phase
component of the signal as a function of T obtained by normalizing the total signal
amplitude.

Figure 26d represents the total signal amplitude obtained from the sig-
nal components combined in quadrature. The shape of the signal, which
is modeled by the square of Equation (50), exhibits recoil modulation at
2ωq given by J2

2[2u2 sin(ωqT)]. Figure 26e shows φAI as a function of T.
The AI phase has the functional form cos(−qgT2

+ qv0T + φ0), where v0

is the initial launch velocity v0 of the atomic cloud and φ0 is an arbi-
trary phase representing the initial position of the grating. The data in this
figure were obtained by normalizing the in-phase component of the signal
using the total signal amplitude. Similar data are obtained in a number
of discrete windows over the timescale of the experiment (2T ∼ 20 ms).
A least-squares fit of the data across all observational windows yielded
a measurement of g precise to 5 part per million (ppm).

Other work related to gravimetry that involves repeated reflections in
a multipulse AI is discussed in Hughes et al. (2009).

5.5 Future Prospects

The preliminary measurement presented here relied on turning on an
attenuated excitation beam during the time in which the atom trap is
loaded, measuring the equipment phase and correcting the effect of
vibrations by actively controlling the phase of the RF oscillator used
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to drive the AOM. In this method, the feedback can be engaged dur-
ing the period the atom trap is loaded, but not during the excitation
pulses. As a result, the phase stability progressively deteriorates over
the timescale of the measurement. The experimental timescale was lim-
ited by the magnetization of the stainless steel vacuum chamber. Several
developments suggest that the precision in the determination of g can
be improved significantly. Atomic recoil experiments using this AI have
achieved transit-time limited timescales of 2T ∼ 70 ms in a nonmagnetiz-
able glass vacuum chamber in which magnetic gradients were suppressed
using external canceling coils. Additionally, the experimental setup shown
in Figure 25a has been modified to include a probe beam that continu-
ously tracks the phase variations resulting in a hundredfold improvement
in phase stability. If a transit time of 300 ms is achieved, a compact experi-
ment can be realized using an atomic fountain. Under these conditions, it
is anticipated that competitive measurements of g precise to better than
∼1 part per billion (ppb) is possible.

6. INTERNAL STATE LABELED INTERFEROMETER

6.1 Introduction

In this section, we describe the temporal evolution of magnetic sublevel
coherences in laser-cooled samples under the influence of static mag-
netic fields. Previous work (Chan et al., 2008; Kumarakrishnan et al.,
1998a,b) has shown that spatially periodic superposition states (coherence
gratings) of magnetic sublevels within the same hyperfine ground-state
manifold can be optically excited using two-photon transitions driven by
appropriately polarized laser fields. For excitation by counter-propagating
pulses, the grating period is λ/2, where λ is the wavelength of light.
The decay time of the coherence due to Doppler dephasing occurs on a
time scale of a few microseconds in which the displacement of a typical
atom exceeds the grating period. For this geometry, the effect of atomic
recoil is significant as in the standing-wave experiments described in ear-
lier sections. In contrast to single-state interferometers, echo experiments
involving magnetic sublevel coherences represent state-labeled interfer-
ometers in which the exchange of photons with the laser fields is associ-
ated with a precise change in internal state (Kasevich & Chu, 1991). For
nearly copropagating small-angle excitation, recoil effects are not impor-
tant and the spatial period can be ∼1000 λ. As a result, the decay time of
the coherence can be several milliseconds. The relatively long coherence
decay time and the ability to apply a uniform magnetic field across a com-
pact laser-cooled sample can be exploited for precision measurements of
magnetic interactions such as atomic g-factor ratios. Such a measurement
relies on a determination of the Larmor frequency ωL associated with the
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evolution of a coherent superposition of magnetic levels in a static mag-
netic field. We use a magneto-optical trap (MOT) consisting of spatially
overlapped samples of laser-cooled 85Rb and 87Rb isotopes. Our measure-
ments suggest that a precision of better than 1 ppm is attainable. Such
a measurement represents a sensitive test of the Zeeman Hamiltonian. In
comparison, pioneering measurements (Cohen-Tannoudji & Kastler, 1966;
Cohen-Tannoudji et al., 1969; White et al., 1968) used RF spectroscopy to
ensure narrow linewidths and paraffin-coated vapor cells to prevent spin
relaxation from wall collisions (that resulted in transit-time-limited signal
decay) to achieve precisions of a few ppm.

We use coherent transient effects designated as magnetic grating free
induction decay (MGFID) and magnetic grating echoes (MGE) that were
originally predicted in Dubetsky and Berman (1994). A laser-cooled gas
is excited using two simultaneous traveling-wave laser pulses applied
at t = 0 with wave vectors k1 and k2 at a small angle (θ ′ ∼ 10 mrad), as
shown in Figure 27a. The individual traveling waves pulses have orthogo-
nal linear or circular polarizations so that it is possible to excite1m = 1 or
1m = 2 coherences, respectively. The pulses are detuned from the excited
state and resonant with the two-photon transition that couples two mag-
netic sublevels of the ground state as shown in Figure 27b. The timing
diagram is shown in Figure 27c. The excitation creates a spatially periodic
superposition (coherence grating) between the magnetic sublevels of the
ground state. The grating, which has a period of ∼ λ/θ ′, is probed by a
read-out pulse along k2. The resulting MGFID signal is coherently scat-
tered along k1 due to conservation of momentum. The grating dephases
because of thermal motion of the atoms causing the MGFID to decay on
a time scale of λ/θ ′u, where u is the most probable speed associated with
the Maxwell–Boltzmann velocity distribution. The dephasing time of the
MGFID can therefore be used to infer the temperature of the sample.

AOM(a) (b) (e)
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Figure 27 (a) Experimental schematic; θ ′ ∼ 10 mrad. PBS = Polarizing beam splitter,
PD = photodetector, AOM = acousto-optic modulator. (b) Level diagram in 85Rb
showing two-photon excitation with orthogonal linear polarizations; 1 is the
one-photon detuning. (c), (d) Timing diagram for the MGFID and MGE experiments
respectively. (e) Experimental schematic for precision measurements.
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The effect of Doppler dephasing can be eliminated by observing mag-
netic grating echo (MGE) signals. The MGE is observed using a second
set of excitation pulses at t = T to rephase the coherence grating as in
Figure 27d. The second pulse modifies the time-dependent coefficients
that describe the coherent superposition of magnetic sublevels so that
the grating reforms at t = 2T. This effect is analogous to the reversal of
the Doppler phases of individual atoms in a traditional two-pulse pho-
ton echo experiment (Rotberg et al., 2007). In the absence of decoherence
due to collisions and background light, the MGE amplitude should decay
on a time scale determined by the transit time of atoms through the laser
beams as shown in Kumarakrishnan et al. (1998b).

The excitation and read-out pulses are derived using acousto-optic
modulators (AOM) and intersect at a small angle in a sample of laser-
cooled atoms as in Figure 27a. A single tapered amplifier (TA) is used to
generate the trapping light for both 85Rb and 87Rb isotopes. Another TA is
used to generate the excitation beams as in Figure 27e. In order to mini-
mize the effect of time-varying magnetic fields, the 85Rb and 87Rb traps are
spatially overlapped. This allows the MGFID signals from both isotopes
to be recorded ∼1 ms apart. The trapping chamber is made of pyrex to
minimize magnetized materials near the MOT and to avoid the effects of
eddy currents. Magnetic field canceling coils suppress magnetic gradients
to the level of 10−5 G/cm. The experiment also relies on active feedback to
stabilize magnetic fields. In this manner, variations of static fields are lim-
ited to ∼10 µG and fluctuations in AC fields are reduced to ∼30 µG over
the time scale of the measurement. At the start of the experiment, both
85Rb and 87Rb atoms are simultaneously loaded from background vapor
into the dual isotope MOT. After turning off the magnetic field gradient
of the MOT, both isotopes are cooled in an optical molasses for ∼10 ms
to temperatures of ∼30 µK. The excitation pulses (∼5 µs in duration) and
read-out (∼1 ms in duration) for each isotope are separately switched on
in a random sequences. The signal is recorded by a gated photomultiplier
tube or a balanced heterodyne detector that is turned off at the time of the
excitation pulses.

The Doppler dephasing time can be measured by mapping out the
MGFID using a short intense read-out pulse with a variable delay with
respect to the excitation pulse in the absence of magnetic fields using a
single isotope. Figure 28a shows the MGFID from a sample of laser-cooled
85Rb atoms optically pumped into a single magnetic sublevel. The MGFID
is fitted to a Gaussian form predicted by theory (Dubetsky & Berman,
1994) and consistent with previous observations (Kumarakrishnan et al.,
1998a,b). The time constant of the decay, τ , and the angle between the
excitation beams are used to extract the most probable speed (and temper-
ature) associated with the Maxwell–Boltzmann distribution of the cloud
along the direction k1 − k2. Figure 28b shows the radius of the sample
along k1 − k2 measured using a CCD camera as a function of delay time
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Figure 28 (a) Decay of the MGFID (circles) as a function of time for an angle θ ′ =6.6
mrad. The decay time extracted by fitting the data to the equation Ae−(t/τ)

2
+ C (solid

line) is τ = 221 µs. The most probable speed, given by u = 2/(kθ ′τ), is 0.17 m/s. The
corresponding temperature is T = 149.2 µK. (b) Ballistic expansion of the cloud as a
function of time (circles). u is extracted by fitting the cloud radius R(t) to a hyperbola

R(t) =
√

R2
0 + (ut)2 (solid line), where R0 is the initial cloud radius. (c) Temperature of

the cloud measured by the CCD camera (circles) and the temperature measured from
the decay time of the MGFID (squares) as a function of total trap laser intensity. Linear
fits are represented by a dashed line with 1.3I + 82.6 µK and a solid line with 1.2I + 73.3
µK. Here, I is the trapping laser intensity in mW/cm2.

with respect to the turn off of the trapping lasers (Vorozcovs et al., 2005).
The temperature is extracted by fitting the data to a hyperbola using the
measured cloud size and the delay time. A comparison of the tempera-
ture measurements using these two techniques is shown in Figure 28c.
The temperature was varied by changing the total trap laser intensity. It
is clear that the temperature measurements show good agreement within
experimental error.

6.2 Effect of a Uniform Magnetic Field on the MGFID

It is known that the Zeeman shift between magnetic sublevels causes tem-
poral oscillations within the envelopes of these signals at multiples of ωL

(Kumarakrishnan et al., 1998a). Chan et al. (2008) presents an analytical
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calculation that predicts the functional form of the Larmor oscillations in
the the MGFID in arbitrary static magnetic fields for excitation pulses with
both orthogonal linear and circular polarizations.

The theoretical treatment is based on a rotation matrix approach
(Edmonds, 1996; Rochester & Budker, 2001; Shore, 1990) in which the
effect of the magnetic field can be described as a time-dependent rotation
of the atomic system about the quantization axis. The evolution of1m = 1
and 1m = 2 coherences in a magnetic field resembles the evolution of
dipole and quadrupole moments of the atom (effects termed alignment
and orientation respectively) in an irreducible tensor basis. On the basis
of the treatment in Rochester and Budker (2001), the probability of the
atom being in a specific coherent superposition is defined by 〈F m | ρ |F m′〉,
where F and m refer to the total angular momentum and magnetic quan-
tum numbers of the ground state, respectively, and ρ is the atomic density
matrix. To calculate the probability that an atom will be in a particular
atomic state in the presence of a magnetic field, we apply the rotation
operator to align the quantization axis as defined by the laser polarizations
with the quantization axis as defined by the magnetic field. This involves
rotating the atomic coordinate system through the Euler angles (α,β,γ )
that describe rotations about each of the axes. The rotated density matrix
is given by

ρm m′(θ ,φ) =
[
D−1(φ, θ , 0)ρD(φ, θ , 0)

]
m m′

, (54)

where

D(α,β, γ ) = exp
(

iγ Ĵz

)
exp

(
iβ Ĵy

)
exp

(
iαĴz

)
. (55)

In Equation (54), θ and φ represent the polar and azimuthal angles in
the new coordinate system. The rotation generates a surface such that the
distance from the origin to a point on the surface defined by (r, θ , φ) is
proportional to the probability of finding the system in a particular state.

The rotation matrix in Equation (55) can be evaluated for the level
structure of interest (specific angular momentum Ĵ). We apply the rota-
tion operator D to the density matrix and evolve the system in time using
the Hamiltonian for the magnetic interaction. The time-dependent atomic
density matrix element ρm m′(t) is then transformed into an irreducible
tensor basis ρK

Q(t) using the transformation

ρK
Q =

∑
m, m′

(−1)F−m′
〈
F, m; F,−m′

∣∣ K, Q〉 ρm m′ , (56)

where 〈F, m; F,−m′ | K, Q〉 is a Clebsch–Gordan coefficient. It is particu-
larly convenient to write the atomic density matrix in this basis, since the
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coherence that is established by the laser pulses is proportional to the ten-
sor elements ρK

Q. The inverse transformation allows us to predict the state
of the system in the m basis and is given by

ρmm′ =

2F∑
K=0

K∑
Q=−K

(−1)F−m′
〈
F, m; F,−m′

∣∣ K, Q〉 ρK
Q. (57)

Since the time dependence of the density matrix in Equation (54) is
given by

ρ̇m m′(θ ,φ, t) = −
i
~

[
Ĥ, ρ(θ ,φ, t)

]
m m′

. (58)

where Ĥ = −gJµBB · J, the solution to Equation (58) is

ρm m′(θ ,φ, t) =
[
e−iĤt/~ρ(θ ,φ, t = 0)eiĤt/~

]
m m′

. (59)

We calculate ρK
Q (defined by Equation (56)) as a function of time for

the F = 3 manifold in 85Rb for excitation by Lin⊥Lin and σ+σ− pulses. The
relevant tensor elements are ρ1

1 and ρ2
2 , respectively. Correspondingly, the

time dependence of the MGFID in a magnetic field is given by

ρ1
1(t) ∝ cos(ωLt)+ sin(η)+ i cos(η) sin(ωLt). (60)

ρ2
2(t) ∝ e−2i(ωLt+η)

[
i
(
1− e−iη

)
+ eiωLt

+ ei(ωLt+η)
]4

. (61)

Here, we use η to specify the angle between the magnetic field and the
quantization axis of the atoms as defined by the laser polarizations. It is
evident that the signals exhibit Larmor oscillations because of the mag-
netic field. The precision measurement of the g-factor ratio relies on a
determination of the ratio of Larmor frequencies in two rubidium isotopes
under such conditions. In order to compare predictions to experimental
results, Equations (60) and (61) are multiplied by a Gaussian decay to
model Doppler dephasing.

The temporal evolution of the coherences is illustrated in Figure 29
which shows the MGFID from laser-cooled 85Rb atoms. The entire decay
was recorded using a long weak read-out pulse. A heterodyne technique
was used to determine the in-phase and quadrature components of the
signal.

Figure 29 shows the signals for Lin⊥Lin and σ+σ− excitation with the
uniform magnetic field at an angle η = π/4 with respect to the quan-
tization axis. For Lin⊥Lin excitation, the MGFID is proportional to the
irreducible tensor element ρ1

1 predicted by Equation (60). For σ+σ− the
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Figure 29 Evolution of the in-phase and quadrature parts of the MGFID in a sample
of cold atoms. (a) The excitation pulses have orthogonal linear polarizations and the
magnetic field is directed at an angle of π/4 with respect to the polarization of k2.
(b) The excitation pulses have opposite circular polarizations with the direction of the
magnetic field at an angle of π/4 to the direction of k1. In both cases the excitation
pulse widths were 2 µs, and the detuning was 40 MHz. The data are shown as dots
and the solid lines are fits based on Equations (60) and (61).

MGFID is given by ρ2
2 predicted by Equation (61). Data shown in Figure 29

exhibits excellent agreement with the fits based on Equations (60) and (61).
The overall signal shapes and oscillation frequency are consistent with
predictions. It is also clear that Larmor oscillations can be recorded over
the entire signal dephasing time.

Figure 30 shows an example of single-shot measurements of the MGFID
signals from the dual species MOT for Lin⊥Lin excitation. To determine
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Figure 30 MGFID signals from a dual isotope MOT. The temporal separation of the
signals is 1 ms.

the oscillation frequency, the data are fitted to a function based on Equa-
tion (60) with η = 0. This procedure can be used to extract the ratio of
g-factors, which is taken to be the ratio of Larmor frequencies. The preci-
sion in the measured Larmor frequencies is 24 ppm and 16 ppm for 85Rb
and 87Rb respectively. For a given set of experimental conditions (pulse
power, duration, magnetic field, read-out pulse intensity, distribution of
magnetic sublevel populations) the average value of the ratio is deter-
mined by averaging ∼100 repetitions. The major systemic effects that
are being investigated include AC stark shifts associated with the read-
out pulse, the Breit–Rabi correction due to the nonlinear variation of the
Larmor frequency with magnetic field that causes the g-factor ratio to be
dependent on the field, and magnetic sublevel population distributions
that cause a variation in the Larmor frequencies of 1m = 1 coherences
within the same ground-state manifold due to the Breit–Rabi effect.

6.3 Effect of a Uniform Magnetic Field on the MGE

The precision of the g-factor ratio can be improved by observing T depen-
dent oscillations in the amplitude of the MGE signal. Such a measurement
raises the exciting prospect of testing relativistic effects that have been
predicted at the level of 100 ppb by Anthony and Sebastian (1994).

The rotation matrix approach described in Section 6.2 is clearly well
suited to describing the MGFID in the tensor basis, since it gives ana-
lytical expressions for arbitrary magnetic field directions. In contrast, the
evolution of the MGE is more complicated. It requires knowledge of the
evolution of the magnetic sublevel populations and coherences during
both excitation pulses as well as the evolution of the Doppler and Larmor
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phases during the experiment. As a result, we use numerical simulations
to model a system of rate equations (Berman, 1991; Berman et al., 1993) to
describe the MGE and to understand this signal in a magnetic field.

An interesting prediction of the simulations is that the amplitude of the
MGE envelope exhibits oscillations that depend on the Rabi frequencies
of the excitation pulses and the magnetic field as a function of the time
between excitation pulses. The amplitude of the MGE oscillates as a func-
tion of T with a characteristic frequency

√
(χ 2/1)2 + ω2

L, where χ and 1
are the Rabi frequency and detuning of the excitation beams, respectively.
This expression has the same form as the generalized Rabi frequency for
a laser field interacting with a two-level atom (Allen & Eberly, 1987).
The term χ 2/1 characterizes the two-photon interaction and replaces
the one-photon Rabi frequency. The two-photon detuning ωL due to the
Zeeman shifted magnetic sublevels levels replaces the one-photon detun-
ing. Owing to the spatial variation in the Rabi frequency χ , the component
of the MGE oscillation at frequency ξ = χ 2/1 averages out on a time scale
of ∼1/ξ (∼100 ns). As a result, it can be expected that the frequency of the
T-dependent oscillations on suitably long time scales will be determined
by ωL. The results of simulations are consistent with expectations based
on a derivation in the limit χ � δ, where δ is the two-photon detuning
(Dubetsky & Berman, 1994). This treatment shows that the echo envelope
oscillates as a function of T with frequency δ (which is analogous to ωL).
Since it should be possible to observe the MGE on a time scale comparable
to the transit time of cold atoms through the region of interaction (several
tens of milliseconds), it should be possible to use this signal to achieve a
significant improvement in the precision with which the g-factor ratio can
be determined. However, the time scale on which magnetic-field-induced
oscillations in the amplitude of the echo envelope can be observed will be
limited by the presence of magnetic field gradients. In the presence of a
gradient, all the atoms that contribute to the signal have slightly different
Larmor frequencies, depending on their spatial locations. As T increases,
the oscillations from individual atoms get out of phase and cancel out as
shown in Chan et al. (2008).

Figure 31 shows the amplitude of the MGE at t = 2T as a function of
T from laser-cooled 85Rb atoms. These data were obtained using a short
intense read-out pulse. To record MGE signals for small values of T, we
used counter-propagating excitation pulses (k1 ≈ −k2) so that durations
of the MGFID and MGE envelopes are ∼1 µs. The data show that the
effect of atomic recoil is significant for this geometry. The signal ampli-
tude in Figure 31 shows the expected modulation at the atomic recoil
frequency ωq = ~q2/2M, where ~q = ~(k1 − k2) is the momentum transfer
to the atoms from the laser fields and M is the atomic mass. The corre-
sponding value of τq = π/ωq shown in Figure 31 is τq ∼ 32 µs. The Larmor
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Figure 31 MGE signal intensity measured with a PMT (dots) using
counter-propagating Lin⊥Lin excitation pulses in a laser-cooled sample. A magnetic
field of B ∼ 0.25 G is directed along the polarization direction of k1. The first and
second excitation pulses are 680 ns and 70 ns in duration, respectively. In addition to
the T -dependent magnetic field oscillations, the signal is modulated at the atomic
recoil frequency (ωq = 96.95(4) rad/ms). The extracted value of ωL from the fit
(solid line) is consistent with the expected value.

frequency was determined to be ωL = 110.395(15) kHz (∼100 ppm) from a
fit based on Equation 26 in Beattie et al. (2008) with an additional cos4(ωLT)
term to account for the magnetic field oscillations. The value of ωL was
consistent with expectations based on the applied magnetic field. Both
ωq and ωL were obtained from a single multiparameter fit to the data in
Figure 31a and b.

Figure 31b shows that Larmor oscillations in the amplitude of the echo
envelope cancel out for T ∼ 500 µs although the overall decay time of
the signal is several milliseconds. This behavior is due to the presence of
a magnetic field gradients of ∼0.05 G/cm due to the magnetized walls
of a stainless steel vacuum chamber (Weel et al., 2006). Following the
demonstration of transit-time-limited recoil experiments in the glass cell,
we anticipate similar observations on time scales of ∼70 ms. As a result,
it should be possible to utilize the MGE to improve the precision in the
g-factor ratio measurements to ∼100 ppb. The main experimental chal-
lenge will be associated with the long-term stability of magnetic fields,
since the time for acquiring a data set such as in Figure 31 is ∼1 hour.

7. COHERENT TRANSIENT EFFECTS

7.1 Introduction

In this section, we describe the suitability of the echo technique for pre-
cision measurements of radiative lifetimes of atomic excited states. The
knowledge of atomic lifetimes is essential for a wide range of experi-
ments in laser spectroscopy such as atom and ion trapping (Moehring
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et al., 2006), trace gas analysis, and remote sensing. Precision measure-
ments are also essential for testing quantum mechanical calculations of
level structure (Blundell et al., 1991; Dzuba et al., 1989; Safronova et al.,
2004).

Precision measurements of natural linewidths and atomic lifetimes
have generally involved scanning a probe laser with a narrow linewidth
or observing the decay of the atomic fluorescence using photon-counting
techniques. The dominant systematic effects in these experiments are the
contribution of laser linewidth and radiation trapping respectively. As
a result, these experiments have required the development of sophisti-
cated experimental setups. A prominent example is a measurement of
the natural linewidth precise to ∼0.25% in a sample of velocity-selected
laser-cooled Na atoms (Oates et al., 1996). This experiment utilized a laser
with a linewidth of only a few kilohertz. Such lasers are accessible to only
a small number of groups. An alternative technique for measuring the
atomic lifetime with comparable precision involves exciting a sample of
trapped atoms with a laser pulse and observing the fluorescence decay.
Such an experiment requires specialized expertise to develop electronics
for photon counting (Simsarian et al., 1998). Examples of other indepen-
dent techniques include photo-association spectroscopy (McAlexander
et al., 1996) in cold atoms and fast atomic-beam experiments (Volz &
Schmoranzer, 1996; Young et al., 1994).

The widely established two-pulse photon echo technique is particularly
well suited for precision measurements of atomic lifetimes because it is
insensitive to the effects of radiation trapping and laser linewidth and is
widely accessible to a large number of experimental groups. Although
photon echoes have been used extensively to measure relaxation rates
in atomic and molecular species (Patel & Slusher, 1968), collisional rates
(Flusber et al., 1978), diffractive collisions (Forber et al., 1990), atomic level
structure (Chen et al., 1980), and lifetimes in solids and doped crystals
(Becker et al., 1988; Macfarlane & Shelby, 1981), it does not appear to have
been used for atomic lifetime measurements.

Spin echoes (Hahn, 1950b) and photon echoes (Abella et al., 1965) are
well understood and have been studied extensively over the past 60 years.
In a typical photon echo experiment involving dilute atomic gases, a laser
pulse is applied at t = 0 to create a coherent superposition of ground and
excited states (Allen & Eberly, 1987). Owing to Doppler broadening, the
superposition dephases with time. At t = T a second pulse is applied
and rephases the superposition so that dipole radiation occurs at t = 2T
(photon echo). The decay of the echo signal as a function of T can be used
to measure various relaxation effects. The basic properties of a two-level
atom and its interaction with an external electric field are based on the
treatment in (Allen & Eberly, 1987; Cohen-Tannoudji et al., 1997, 1998).
This treatment can be used to describe coherent transient effects such
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as free induction decay and photon echoes using the semiclassical Bloch
vector model.

In a typical photon echo experiment involving an inhomogeneously
broadened sample, a π/2 pulse applied at t = 0 will rotate the Bloch
vector associated with the macroscopic dipole moment to the uv-plane.
Following the pulse, the Bloch vectors associated with the individual
atoms will precess freely around the w-axis. Owing to Doppler broaden-
ing, the precession occurs with different rates for different atoms resulting
in rapid dephasing of the macroscopic dipole moment (FID). It is possible
to reverse the dephasing process after some time t = T using a π -pulse.
This creates a rephased dipole moment resulting in an echo at time t = 2T.
A schematic representation of the process of echo formation is shown in
Figure 32.

For a Doppler-broadened gas, in the absence of collisional dephasing,
the echo intensity depends only on radiative decay. This dependence is
given by

I = I0 exp
(
−

2T
τ

)
. (62)
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Figure 32 Bloch vector representation. (a) Macroscopic Bloch vector representing
all atoms in the ground state. (b) Superposition state immediately after π/2-pulse.
(c), (d) Bloch vector dephasing. (e) Inversion due to π -pulse. (f) Bloch vector rephasing
(photon echo).
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The laser linewidth and the temporal shape of the excitation pulses
determine the velocity distribution that contributes to the echo forma-
tion. Although these factors affect the signal strength, they do not affect
the decay time constant, τ . Similarly, the intensity, temporal shape of
the excitation pulses and sample density affect the echo amplitude and
pulse propagation but not the decay time constant. Spontaneous emission
during the excitation pulses is also not expected to affect τ .

On the basis of Rotberg et al. (2007), we describe a measurement of
the 5P3/2 excited state lifetime using two-pulse photon echoes in rubid-
ium vapor. The measurement is precise to ∼1% and agrees with the best
measurement of atomic lifetime in Rb (Simsarian et al., 1998).

7.2 Experimental Setup and Results

The excited state lifetime is determined by measuring the exponential
decay of the photon echo intensity as a function of the time T between
the excitation pulses. The experiment relies on precisely timed and suffi-
ciently short optical pulses generated from a CW laser using acousto-optic
modulators (AOMs). The excitation pulses are on resonance with the
F = 3→ F′ = 4 transition in 85Rb or F = 2→ F′ = 3 transition in 87Rb. The
echo signal is detected using a heterodyne detection technique used in
many experiments involving cold atoms. The signals are generated in a
7-cm-long vapor cell containing a natural abundance of rubidium isotopes
(∼72% of 85Rb and ∼28% of 87Rb). The vapor density, which can be varied
by heating the cell, is monitored by measuring the absorption of a probe
laser scanned across the atomic resonance.

The experimental setup is shown in Figure 33. Short pulse generation
was achieved by focusing and spatially filtering light into two AOMs
operating at 260 MHz and 400 MHz. As a result, the resonant excitation
pulses have temporal Gaussian profiles with a full width at half maxi-
mum (FWHM) of ∼20 ns and an on/off ratio of ∼106 : 1. The heterodyne
detection technique involves use of a local oscillator (LO) derived from a
separate 260 MHz AOM as shown in Figure 33. The echo signal is com-
bined with the LO on a beam splitter and detected as a 400 MHz beat
note using photodiodes. The echo decay time can be measured by vary-
ing T and recording the echo amplitude by averaging 128 repetitions as
shown in Figure 34a. To acquire the background for each data point, the
experiment is repeated with the first pulse turned off. The oscilloscope
traces shown in Figure 34a are squared and integrated to obtain the echo
intensity. The echo intensity is expected to show an exponential decay as
a function of 2T (see Equation [62]). The measurement of the lifetime is
achieved by fitting the signal as a function of 2T to this model, as shown
in Figure 34b.
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Figure 33 The optical layout. 1/2 and 1/4 represent λ/2 and λ/4 wave plates
respectively.

7.3 Discussion

Systematic effects on the echo decay time constant were investigated by
varying several parameters affecting the echo intensity. These include the
intensity and durations of the excitation pulses, cell temperature, strength
of a quantizing magnetic field, and the beam diameter of the excitation
pulses. Other effects such as collisional dephasing and decoherence due
to background light can be ruled out on the time scale of the experi-
ment on the basis of experimental conditions. As shown in Rotberg et al.
(2007), these parameters did not produce systematic effects on the mea-
sured echo decay time. The final value for the lifetime was determined on
the basis of a double-blind study by averaging 67 equally weighted data
sets distributed between both 85Rb and 87Rb isotopes. The distribution of
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Figure 34 (a) Oscilloscope trace of excitation pulses and the photon echo using
heterodyne detection. (b) Decay of the echo intensity as a function of 2T . Data are
fitted to an exponential function that results in a lifetime measurement of
τ = 25.25± 0.38 ns.

points is a Gaussian with an average value τ = 26.47± 0.30 ns. The quoted
error represents the standard deviation of the mean (1σ uncertainty). The
measurement has a precision of 1.14% and is in agreement at the level
of 1σ with the best measurement in rubidium (Simsarian et al., 1998)
(26.20± 0.09 ns).

The theoretical prediction for the echo intensity as a function of the
excitation pulse area is well understood in the absence of spontaneous
emission (Allen & Eberly, 1987). Since the experiment involved pulse
widths that are comparable to the lifetime and since the excitation beams
have a finite spatial profile, the dependence of the signal intensity is
expected to differ from that in the ideal case. The theory must be modified
to include the effect of spontaneous emission and Gaussian pulse shapes
(Allen & Eberly, 1987). The effect of the spatial profile can also be taken
into account by assigning a Gaussian distribution of Rabi frequencies and
averaging the response over the profile. Results based on numerical sim-
ulations (Rotberg et al., 2007) show that the maximum echo intensity is
obtained when the ratio of the excitation pulse areas is ∼1.2. In contrast,
for the ideal case, the theory ignores the effect of spontaneous emission
and the temporal and spatial profiles of the excitation beams so that this
ratio is predicted to be 2.

In summary, the results suggest that improved measurements precise to
∼0.25% are attainable through additional data acquisition and studies of
systematic effects. Improvements are expected to include optical pumping
into a single magnetic sublevel to achieve an increase in the signal-to-
noise ratio and use of shorter excitation pulses to minimize the effects
of spontaneous emission. The work can also be extended to the 5P1/2

transitions so that comparisons with previous measurements (such as in
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Young et al. [1994]) are possible. The absence of systematic effects and
the relative simplicity of this technique suggest that the photon echo tech-
nique may be well suited for precision measurements in atomic and ionic
transitions that have relatively large oscillator strengths.

8. SUPERFLUORESCENCE IN COLD ATOMS

8.1 Introduction

Previously described experiments on single-state atom interferometers
and magnetic sublevel coherences have relied on the coherent transient
response of a sample of laser-cooled atoms for signal detection. It is well
known that the radiation from a coherently driven sample containing Nex

excited atoms will exhibit an N2
ex enhancement in peak intensity in the far

field. It is interesting that this well-known signature is shared by two dis-
tinct collective effects termed superfluorescence (SF) and superradiance
(SR). In this section, we review observations of both effects in a sample of
laser-cooled atoms (Paradis et al., 2008).

In SF, a sample of incoherently excited atoms can be locked in phase
to produce coherent emission by spontaneously emitted photons emitted
into preferred electromagnetic modes (Gross & Haroche, 1982). SF is char-
acterized by a burst of radiation that has some of the features of radiation
from a phased array of dipoles (Rehler & Eberly, 1971). For SR (Dicke,
1954), the direction of emission is defined by the initial phases of excitation
pulses and phase-matching conditions (Schneble et al., 2003). In contrast,
the shape of the sample defines the directions of SF emissions (Bonifacio
& Lugiato, 1975).

The ideal conditions for SF can be achieved if the propagation time for
light to travel through the sample, τe, satisfies the condition τe < τr, where
τr = (Nex0µ)

−1 is the dipole coupling time for the evolution of a macro-
scopic dipole moment (Bonifacio & Lugiato, 1975). Here, 0 is the rate of
spontaneous emission for a single atom and µ is the diffraction solid angle
at the SF wavelength, which defines the fraction of spontaneously emit-
ted photons that are amplified. Under these conditions, spontaneously
emitted photons from one end of the sample can influence the collec-
tive evolution of the entire sample. In this regime, the SF peak intensity
scales as N2

ex and the pulse width scales as N−1
ex to conserve energy. If

τe > τr, the emission of the system can be regarded as the incoherent sum
of coherent emissions from a number of subregions within the sample that
evolve independently (Arecchi & Courtens, 1970; Gross & Haroche, 1982;
Kumarakrishnan & Han, 1998; Kumarakrishnan et al., 2005).

SF is also characterized by a delay time with respect to the excitation
pulse. Under conditions in which τe < τr, a fully quantum-mechanical
model for SF initiation predicts that the delay time for SF with respect
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to the excitation pulse is given by (Polder et al., 1979):

τd =
τr

4

[
ln
(√

2πNex

)]2

. (63)

Since τd is proportional to τr, it approximately scales as N−1
ex .

The threshold number of atoms NT required for SF is achieved when
τr = T2, where T2 is the dephasing time of the system. For a Doppler-
broadened vapor NT ∼ 1010 (Gibbs et al., 1977), whereas it is typically∼105

for the case of laser-cooled atoms because of the negligible effect of the
Doppler broadened linewidth 0D . 1 MHz. Therefore, SF can become a
dominant channel for relaxation and observations of SF from atom traps
can be recorded with a high signal-to-noise ratio. Studies of SF scaling
laws can serve as useful diagnostic tools for studying various dephas-
ing processes, such as cold Rydberg atom interactions (Gross & Haroche,
1982). Another interesting aspect of working with atom traps is that it
is relatively straightforward to change the shape of the sample and to
observe the enhancement of SF along the preferred axes of the atomic
cloud. Apart from realizing the threshold atom number, it is further nec-
essary that τd < τn, where τn is the natural radiative decay time associated
with the excited state. In some cases (Kumarakrishnan & Han, 1998),
effects such as radiation trapping can extend the effective lifetime of the
excited state permitting SF to evolve even from rapidly decaying atomic
states.

SF has been extensively studied in atomic gases to understand its scal-
ing laws (Gibbs et al., 1977), effects of pulse propagation (Skribanowitz
et al., 1973), quantum fluctuations (Gross & Haroche, 1982; MacGillivray
& Feld, 1985; Vrehen et al., 1982), and dephasing processes (Maki et al.,
1989; Schuurmans, 1980). SF has also been studied as an amplifier of
quantum noise, since peak heights, pulse widths, and delay times exhibit
characteristic fluctuations because of the stochastic nature of SF initiation
(Glauber & Haake, 1976; Haake et al., 1979; Raymer & Walmsley, 1990).

In recent studies (Paradis et al., 2008), we have observed SF from
spherical and cigar-shaped clouds of laser-cooled Rubidium atoms. The
atomic system is excited to the 5D5/2 level from the 5S1/2 ground state
via two-photon excitation through the intermediate 5P3/2 level as shown
in Figure 35. The evolution of the system from the 5D5/2 level through
the 6P3/2 level to the 5S1/2 ground level is monitored by time-resolved
measurements of the light emitted on the 6P → 5S transition at 420 nm.
The time delays for the 420-nm radiation scaled as ∼N−1, where N is the
atom number. However, the delays are much smaller than expectations for
uncorrelated cascade fluorescence. Since N is significantly smaller than
the threshold number for SF on the 420-nm transition and larger than
the threshold number for the 5D → 6P transition at 5.2 µm, our obser-
vations suggest that rapid de-excitation of the 5D to the 6P level via SF
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Figure 35 Rubidium 87 level diagram: the solid lines represent excitation pulses,
and the dashed lines correspond to SF emissions pertaining to this work. The dotted
lines represent the expected SF cascade for incoherent excitation. The radiative
lifetimes of the 5D5/2 → 6P3/2 and the 6P3/2 → 5S1/2 transitions are 690 ns and 357 ns,
respectively. The total radiative lifetimes of the 5D5/2 and 6P3/2 states are 241 ns and
109 ns, respectively. These lifetimes are based on Arimondo et al. (1977), Sansonetti
(2006). The hyperfine structure of the 5D state shown in the inset was measured in
Grove et al. (1995).

at 5.2 µm triggered SR-like emissions at 420 nm. This inference is sup-
ported by the observed time delays for the 420-nm emission that agree
with SF time-delay estimates for the 5.2-µm transition. Pronounced varia-
tions in the directionality of of the 420-nm radiation were also observed
by changing the shape of the sample. For spherical clouds, the emis-
sion is isotropic, whereas for cigar-shaped clouds, it is highly anisotropic.
Along the long axis of cigar-shaped atom clouds, it is possible to observe
both triggered emission and incoherent cascade fluorescence as tempo-
rally well-resolved peaks in the detected signal. The triggered emission is
highly concentrated along a direction in between the directions of the two
almost parallel excitation beams, which is a well-known characteristic of
SR-like emission.

The experiment showed that the evolution of the system depended
critically on whether the excitation is coherent or incoherent. As shown
in Bowden and Sung (1978), avoiding coherent excitation imposes a
particularly restrictive condition on pumping. If the rubidium system can
be excited without any initial coherence between the 5S and 5D states, the
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system can be expected to decay through a multistep SF cascade involving
the 6P→ 6S (2.7 µm) and 6S→ 5P (1.3 µm) transitions shown in Figure 35.
In contrast, if there is an initial coherence between the 5S and 5D states, the
system is expected to decay through SF on the 5D→ 6P (5.2 µm) transition
and triggered SF on the 6P→ 5S (420 nm) transition—a process referred to
as “Yoked SF” (Brownell et al., 1995; Lvovsky & Hartmann, 1999; Lvovsky
et al., 2002).

8.2 Experimental Details

A schematic of the experimental setup is shown in Figure 36. Light from
an external-cavity diode laser (ECDL) is used for both the MOT beams
on the 5S1/2, F = 2→ 5P3/2, F = 3 transition in 87Rb and the first excitation
beam for the SF experiment (∼30 MHz above the MOT transition).

Another ECDL is used to produce ∼50 mW of 776-nm light. Beams
derived from the locked 780-nm laser and the 776-nm laser are counter
propagated through a rubidium vapor cell at room temperature. The
inherently Doppler-free two-photon transition resonances associated with
the 5D5/2 hyperfine levels can be observed by measuring the absorp-
tion of 776-nm light in the cell. The 776-nm laser is stabilized by means
of side-locking to the 5P3/2, F = 3→ 5D5/2, F = 4 absorption resonance.
This laser also produces the light for the second excitation beam for the
SF experiment, which is ∼30 MHz below the 5P3/2, F = 3→ 5D5/2, F = 4
transition.

776 nm laser

780 nm laser

Photodiode

Saturated
absorption

AOM

PMT

420 nm filter

MOT

To MOT

λ/2λ/2

λ/2

ν2− Δ
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5S1/2 5P3/2

5P3/2 5D5/2

Photodiode

AOM

A
O
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Figure 36 Diagram of experimental setup. SF emissions at 420 nm can be measured
both perpendicular to and along the direction of the excitation pulses. (ν1 denotes the
frequency of the 5S1/2, F = 2→ 5P3/2, F = 3 transition, and ν2, that of the 5P3/2,
F = 3→ 5D5/2, F = 4 transition).
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8.3 Results and Discussion

The ground-state atom number, N, was varied from ∼107 to 109 by chang-
ing the loading time of the MOT. The observed emissions were found
to be sensitive to the delay time between the two excitation pulses. One
limiting case is when the lower-transition pulse peaks before the upper-
transition pulse—referred to as sequential excitation. Another limiting
case occurs when the upper-transition pulse peaks before the lower-
transition pulse; this case is referred to as Stimulated Raman Adiabatic
Passage (STIRAP) (Gaubatz et al., 1990). In both cases, a significant frac-
tion of the ground-state population was transferred to the 5D state. We
estimate a typical 5S→ 5D excitation efficiency of∼50% on the basis of the
photon yield observed on the 6P→ 5S decay channel and on simulations
of the excitation process.

We first describe time-resolved measurements of the 420-nm emission
on the transition 6P3/2 → 5S1/2 along the long axis of cigar-shaped atom
clouds. Each curve in Figure 37 represents the emission intensity ver-
sus time for a distinct ground-state atom number, N. This atom number
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Figure 37 Time-resolved SF detected along the long axis of cigar-shaped atom
clouds for various ground-state atom numbers, N. The excitation pulses are
overlapped, and time t = 0 corresponds to the center of the excitation pulses.
N increases from the bottom to the trop curve. The dashed curve indicates the
time-dependence of the excitation pulses. The inset shows the height of the two
maxima observed in the time-resolved emission signals (peak 1 and peak 2) for a
fixed number of atoms, as a function of the delay time between the two excitation
pulses. (Delay time < 0 corresponds to STIRAP excitation pulse ordering, while delay
time > 0 corresponds to sequential excitation pulse ordering.)



AAMOP Ch03-9780123855084 2011/8/2 10:41 Page 191 #73

Time-Domain Interferometry with Laser-Cooled Atoms 191

is varied by changing the loading time of the MOT. The steady-state
MOT fluorescence is monitored using a calibrated photodetector. N is
determined from the measured photocurrent, the solid angle subtended
by the detector, the total intensity of the MOT beams, and the detuning of
the MOT beams from resonance. It is assumed that the MOT fluorescence
is isotropic.

It is evident in Figure 37 that for a large N two time-resolved peaks
occur. The time delay of the second peak (peak 2) remains unchanged.
We interpret peak 2 as being due to cascade fluorescence. To support this
interpretation, we have modeled the level system shown in Figure 35
using rate equations for atomic populations. In the simulation, a laser
pulse with a Gaussian envelope (FWHM ∼200 ns) excites atoms from
the 5S to the 5D level. The simulation shows that the 420-nm emis-
sion resulting from uncorrelated decay peaks at a delay time of ∼200 ns.
This predicted delay of the cascade fluorescence peak matches peak 2 in
Figure 37 reasonably well.

The first of the peaks in Figure 37 (peak 1) shows the essential char-
acteristic of SF, namely a decreasing time delay with increasing N. In
accordance with this interpretation, it is also observed that peak 1 increas-
ingly dominates peak 2 as N increases. For large atom numbers, the peak
1 practically coincides in time with the excitation pulses, shown as a
dashed line in Figure 37. This observation indicates that the 5D level is
regeneratively pumped while the SF emission occurs (Gross et al., 1976).

The inset in Figure 37 shows the peak heights of the time-resolved
emissions as a function of the delay between the excitation pulses for a
fixed atom number (N ≈ 3× 108). Negative pulse delays correspond to
STIRAP excitation, where the 776-nm pulse precedes the 780-nm pulse,
while positive pulse delays correspond to sequential excitation. The SF
emission in peak 1 is dominant in the STIRAP regime and a large part
of the sequential regime. The cascade fluorescence (peak 2) dominates for
sequential excitation-pulse ordering with pulse delays larger than about
+100 ns.

Estimates based on Equation (63), assuming the largest atom numbers
available in our experiment, show that SF should occur on the 5D→ 6P
transition, while conditions are below the SF threshold for the 6P→ 5S
transition. Therefore, for the higher atom numbers (see Figure 37) SF on
the 5D→ 6P transition is expected to rapidly populate the 6P level, lead-
ing to a rapid onset of 420-nm emission, as observed for peak 1. The
420-nm emission appears to be SF as well, as evidenced by the presence of
two peaks in Figure 37, the short duration of the emission peak 1 (which
is of the order, or less than the 6P lifetime), and the high directional-
ity of the 420-nm emission for cigar-shaped clouds. As the conditions in
our experiment are below threshold for SF on the 6P→ 5S transition, the



AAMOP Ch03-9780123855084 2011/8/2 10:41 Page 192 #74

192 B. Barrett et al.

observed (apparently superfluorescent) emission on that transition must
be attributed to triggered SF (Lvovsky & Hartmann, 1999; Lvovsky et al.,
2002) that results from coherence between the 5S and 5D state amplitudes
generated during excitation.

We now compare the time delays of the emission peaks observed for
both cigar-shaped and spherical atom clouds. Figure 38 shows the time
delays as a function of N for peak 1 (solid diamonds) and peak 2 (empty
diamonds) for observation along the long axis of the cigar-shaped cloud.
The delays are measured with respect to the peak of the excitation pulses
(with 780-nm and 776-nm pulses temporally overlapped). A fit to the data
for peak 1 (solid line) establishes that the SF emission exhibits the expected
N−1 variation, with no fit offset. The dashed line shows the expected SF
delay for 5.2-µm emission, for the same range of N, calculated using Equa-
tion (63) based on the measured trap parameters. Although the two curves
are in excellent agreement, we note that there are systematic uncertainties
with the measured trap parameters, at the level of ±10%. Nevertheless, it
is clear that the predicted time delay for the 5.2 µm occurs on the same
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Figure 38 Delay time of SF versus number of atoms. The delays marked peak 1
(solid diamonds) and peak 2 (empty diamonds) correspond to temporally resolved
peaks, as shown in Figure 37, measured along the long axis of the cigar-shaped cloud.
Delays for the spherical trap are shown with triangles. For the case of the cigar and
the sphere, the experimental data are fitted with functions of the type aN−x

+ b (with
fit parameters a, b, and x), shown as solid lines. The fits show that the delays scale as
the expected, with x = (1.12± 0.16) for the cigar and x = (1.17± 0.14) for the sphere,
respectively. The offset b is zero for the cigar, and ∼70 ns for the sphere. The dashed
line shows the predicted 5.2-µm delay, calculated on the basis of Equation (63) using
measured cloud parameters. Numerical simulations for cascade fluorescence suggest
that peak 2 should occur at 174 ns.
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time scale as the 420-nm SF. This indicates that the 420-nm emission is
triggered by the presence of the 5.2-µm emission, confirming the results
in Lvovsky and Hartmann (1999). The data also show that there is no
variation in the delay time for peak 2, consistent with expectations for
cascade fluorescence. The discrepancy between the observed delay (∼150
ns) and the predicted delay for cascade fluorescence (174 ns for an excita-
tion FWHM of 114 ns) can be attributed to the uncertainty in the degree of
overlap between excitation pulses.

Similar data for the time delay of emission from the spherical trap
(triangles) are also shown in Figure 38. A fit (solid line) establishes that the
emission exhibits a N−1 dependence, indicating superfluorescent decay.
The emission delay for the spherical cloud is considerably longer than for
the case of the cigar-shaped cloud (peak 1). We attribute this difference to
the fact that for the spherical cloud the value of µ and the atom density
are lower than for the cigar-shaped cloud. For spherical atom clouds, we
cannot resolve the SF emission from the cascade emission over the entire
accessible range of N. The fact that for spherical clouds the SF and cascade
emissions blend into one another may explain the fit offset of ∼70 ns for
the case of the spherical cloud, apparent in Figure 38.

In future studies in cold atoms, it could be investigated if the expected
SF cascade emissions at 5.2, 2.7, and 1.4 µm occur in the presence of
incoherent excitation. Detection of time-resolved signals with adequate
signal to noise ratio at these wavelengths would constitute the main
experimental challenge. Applications of this work could extend to studies
of dephasing processes, such as interatomic interactions, in cold atoms.
Other applications could relate to Bose-condensed samples that typically
have low atom numbers and verification of predicted statistical properties
for spherical samples (Prasad & Glauber, 1985).
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Cataliotti, F. S., Scheunemann, R., Hänsch, T. W., & Weitz, M. (2001). Superresolution of
pulsed multiphoton raman transitions. Physical Review Letters, 87, 113601.

Chan, I., Andreyuk, A., Beattie, S., Barrett, B., Mok, C., Weel, M., et al. (2008). Properties of
magnetic sublevel coherences for precision measurements. Physical Review A, 78, 033418.

Chapman, M. S., Hammond, T. D., Lenef, A., Schmiedmayer, J., Rubenstein, R. A., Smith, E.,
et al. (1995). Photon scattering from atoms in an atom interferometer: coherence lost and
regained. Physical Review Letters, 75, 3783.

Chen, Y. C., Chiang, K., & Hartmann, S. R. (1980). Spectroscopic and relaxation character of
the 3P0-3H4 transition in LaF3:Pr3+ measured by photon echoes. Physical Review B, 21, 40.

Chiow, S. W., Herrmann, S., Chu, S., & Müller, H. (2009). Noise-immune conjugate large-area
atom interferometers. Physical Review Letters, 103, 050402.
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