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l intensity zeros 
l + 1 maxima 
 
m intensity zeros 
m+1 maxima 
 
for l ≠ 0/ m ≠ 0 
 
 
 
 
 
Mode frequencies depend on cavity geometry 
 
Higher order modes (curvature of mirror) 
 
 
Laguerre- Gaussian  
 
Are cylindrically symmetric 
 
 
 
 
 
 
 
 
 
 
 
 



Spatial Modes 
 

Laser Cavity 

 
 

Longitudinal Cavity Modes  
Δν ≡ c /2d 

− Quantum states of an EM field 
− Photons occupying cavity mode states is analogous to electron occupying atomic states 

ΔωΔt ~ 1 (classical optics) 
Δ(ħw)Δt ~ ħ (quantum optics) – mode energy is uncertain because of uncertainty in 

time which photon leaves cavity 
 
Gaussian Beams 

− Cavity Modes represent longitudinal modes that correspond to standing waves along axis 
− Frequencies depend on separation on mirror separation d 
− Light distribution in transverse direction or perpendicular to cavity axis are represented by 

transverse modes 
Properties: 

This is a fundamental mode of laser cavity that represents a particular transverse mode 
Natural confinement, ie: transverse confinement without mirrors – solution to Maxwell’s 
equations 
Gaussian spatial profile at any location 
Smallest possible angular spread for a given initial beam diameter 
Spread due to diffraction only 
No oscillations in transverse profile 

 
Spatial Profile is a smooth function 

 



E(r,z) = Eo(wo/w(z))exp[-r2/w(z)2] 
r2 =x2 + y2 (radial coordinates) 

 

z = propagation direction 
w(z) = spot size or radius 
wo = minimum spot size at z=0 

− The curvature  of wave front changes along z 
− At a small distance from z axis the wave front can be approximated as being spherical  

 
w2(z) = wo

2[1+(z/zo)2] (2) 
R(z) = z[1+(zo/z)2] (3) 

 
(2) and (3) obtain by solving Maxwell’s equations for cavity 
 

zo = πwo
2/λ  (Rayleigh Range) 

 
Two Parameters Specify Gaussian Beam 

− wo and w(z) for a given λ 
Note that radius of curvature changes sign as beam propagates through focal plane (z=0) 
Notice that the wavefronts are plane waves at z-0 

 
 
 
 
 
 
 
 
 
 
 
 
 
Rayleigh Range zo 

w(z = zo) = √2wo 
 

A(zo) = 2A(z=0) 
 

Here A is the area at Rayleigh range which is twice the area at z= 0 since area is proportional to w2 
− 2zo = cofocal beam parameter 
− For z >> zo, w(z) ~ wo(z/zo) 

 
Divergence Half Angle 
 
From Geometry, θ = w(z)/z = wo/zo 
Using the definition of zo in above equation 
 

θ ~ λ/πwo 

 



Recall diffraction through circular aperture 
 

θfull ~ λ/D 
 

Where D is the beam diameter 
 
Practical Problem 

 
An important practical problem is to infer the peak 
intensity from a measurement of the beam power 
Assume circularly polarized symmetric beam with 
uniform intensity 
Spatial profile is top hat so 
 

Imax = P/πwo
2 

 

 
 
Peak Intensity for Gaussian Beam 
 
Divide the beam into circular annuli. Consider annulus of radius r and thickness dr.  
 

 
dA = 2πr dr 
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Here I(r,z) = ½ c εoE2(r,z)  
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 [Gaussian Profile] 
 
Where Eo = E(r = 0,z = 0) 
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So that ܫ  
 
Similarly using E(r,z) = Eo௪ሺ
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show that I(r = 0, z) = 
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