Phys 4061- Lecture Nine
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Spatial Modes

Laser Cavity
Buildup
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Longitudinal Cavity Modes
Av=c/2d
— Quantum states of an EM field
— Photons occupying cavity mode states is analogous to electron occupying atomic states
AoAt ~ 1 (classical optics)

A(hw)At~h  (quantum optics) — mode energy is uncertain because of uncertainty in
time which photon leaves cavity

Gaussian Beams

— Cavity Modes represent longitudinal modes that correspond to standing waves along axis
— Frequencies depend on separation on mirror separation d

— Light distribution in transverse direction or perpendicular to cavity axis are represented by
transverse modes

Properties:
This is a fundamental mode of laser cavity that represents a particular transverse mode

Natural confinement, ie: transverse confinement without mirrors — solution to Maxwell’s
equations

Gaussian spatial profile at any location

Smallest possible angular spread for a given initial beam diameter
Spread due to diffraction only

No oscillations in transverse profile

Spatial Profile is a smooth function
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E(r,2) = Eo(Wo/W(z))exp[-I'/w(z)’]
=x’+y’ (radial coordinates)

z = propagation direction
w(z) = spot size or radius
W, = minimum spot size at z=0
— The curvature of wave front changes along z
— Atasmall distance from z axis the wave front can be approximated as being spherical

w(2) = wo [1Hz/2,)"]  (2)
R(z) = z[1H(zy/2)’] 3)

(2) and (3) obtain by solving Maxwell’s equations for cavity
7o =1w, /A (Rayleigh Range)
Two Parameters Specify Gaussian Beam
— W, and w(z) for a given A

Note that radius of curvature changes sign as beam propagates through focal plane (z=0)
Notice that the wavefronts are plane waves at z-0

divergence
Plane Wave 0 due to
diffraction
J' 4
2Wo
z=0  2we\2

2w(z)

Rayleigh Range z,

w(z=12,) = \/iwo
A(z,) = 2A(z=0)

Here A is the area at Rayleigh range which is twice the area at z= 0 since area is proportional to w”
— 2z, = cofocal beam parameter
—  For z>> z,, w(z) ~ wo(2/2,)

Divergence Half Angle

From Geometry, 0 = w(z)/z = wy/z,
Using the definition of z, in above equation

0 ~ Maw,



Recall diffraction through circular aperture
Osun ~ M/D

Where D is the beam diameter
Practical Problem

An important practical problem is to infer the peak
intensity from a measurement of the beam power
Assume circularly polarized symmetric beam with
uniform intensity

Spatial profile is top hat so

Lyax = P/tw,”
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Peak Intensity for Gaussian Beam

Divide the beam into circular annuli. Consider annulus of radius r and thickness dr.

dA =2nardr
P=[I(r,z)dA = fOOOI(T,Z)ZT[T dr

Here I(r,z) = % ¢ &,E*(r,2)

Yo g=1?/W(2) [Gaussian Profile]
w(z)

E(r,z) = E,

\dl" Where E, = E(r=0,z=0)

Using the identity fooo e B dy = % \/%,
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show that P = EWOZ EcsoEo2 = ;Wozlmax
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So that Iq = 2P /tw,?
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Similarly using E(r,z) = E

show that I(r=0, z) =
|nax/ €2




